Veratraldehyde

Veratraldehyde
Product Name Veratraldehyde
CAS No.: 120-14-9
Catalog No.: CFN99315
Molecular Formula: C9H10O3
Molecular Weight: 166.2 g/mol
Purity: >=98%
Type of Compound: Phenols
Physical Desc.: Powder
Source: The herbs of Cymbopogon javanensis.
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Price: $30/20mg
Veratraldehyde as a corrosion inhibitor for Zinc in different acid medium. Veratraldehyde was reduced by aryl-alcohol dehydrogenase to their corresponding alcohols, which was oxidized by aryl-alcohol oxidase, producing H2O2.
Inquire / Order: manager@chemfaces.com
Technical Inquiries: service@chemfaces.com
Tel: +86-27-84237783
Fax: +86-27-84254680

Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
  • Plant Physiol Biochem.2023, 203:108073.
  • Cancer Sci.2022, 113(4):1406-1416.
  • Biosci Rep.2020, 40(8):BSR20201219.
  • Research Square2022, rs.3.rs-1948239
  • Arch Biochem Biophys.2018, 644:93-99
  • Korean Journal of Pharmacognosy2018, 49(1):76-83
  • Antioxidants (Basel).2020, 9(6):544.
  • Molecules.2022, 27(7):2360.
  • Pharmacol Rep.2019, 71(2):289-298
  • Korean J of Medicinal Crop Science2018, 220-226
  • Anisic aldehyde

    Catalog No: CFN90476
    CAS No: 123-11-5
    Price: $30/20mg
    Helicid

    Catalog No: CFN99957
    CAS No: 80154-34-3
    Price: $30/20mg
    3,4-Dihydroxybenzaldehyde

    Catalog No: CFN99450
    CAS No: 139-85-5
    Price: $30/20mg
    Vanillin

    Catalog No: CFN90463
    CAS No: 121-33-5
    Price: $30/20mg
    Isovanillin

    Catalog No: CFN90358
    CAS No: 621-59-0
    Price: $40/20mg
    Veratraldehyde

    Catalog No: CFN99315
    CAS No: 120-14-9
    Price: $30/20mg
    3,5-Dihydroxybenzaldehyde

    Catalog No: CFN90111
    CAS No: 26153-38-8
    Price: Inquiry(manager@chemfaces.com)
    2,5-Dihydroxybenzaldehyde

    Catalog No: CFN99307
    CAS No: 1194-98-5
    Price: $30/20mg
    2,4,5-Trimethoxybenzaldehyde

    Catalog No: CFN98680
    CAS No: 4460-86-0
    Price: $30/20mg
    Phenylacetaldehyde

    Catalog No: CFN93158
    CAS No: 122-78-1
    Price: $30/20mg
    Front Microbiol. 2014 Mar 7;5:87.
    Use of benzo analogs to enhance antimycotic activity of kresoxim methyl for control of aflatoxigenic fungal pathogens.[Pubmed: 24639673]
    The aim of this study was to examine two benzo analogs, octylgallate (OG) and Veratraldehyde (VT), as antifungal agents against strains of Aspergillus parasiticus and A.flavus (toxigenic or atoxigenic).
    METHODS AND RESULTS:
    Both toxigenic and atoxigenic strains used were capable of producing kojic acid, another cellular secondary product. A. fumigatus was used as a genetic model for this study. When applied independently, OG exhibits considerably higher antifungal activity compared to Veratraldehyde. The minimum inhibitory concentrations (MICs) of OG were 0.3-0.5 mM, while that of Veratraldehyde were 3.0-5.0 mM in agar plate-bioassays. OG or Veratraldehyde in concert with the fungicide kresoxim methyl (Kre-Me; strobilurin) greatly enhanced sensitivity of Aspergillus strains to Kre-Me. The combination with OG also overcame the tolerance of A. fumigatus mitogen-activated protein kinase (MAPK) mutants to Kre-Me. The degree of compound interaction resulting from chemosensitization of the fungi by OG was determined using checkerboard bioassays, where synergistic activity greatly lowered MICs or minimum fungicidal concentrations. However, the control chemosensitizer benzohydroxamic acid, an alternative oxidase inhibitor conventionally applied in concert with strobilurin, did not achieve synergism. The level of antifungal or chemosensitizing activity was also "compound-strain" specific, indicating differential susceptibility of tested strains to OG or Veratraldehyde, and/or heat stress. Besides targeting the antioxidant system, OG also negatively affected the cell wall-integrity pathway, as determined by the inhibition of Saccharomyces cerevisiae cell wall-integrity MAPK pathway mutants.
    CONCLUSIONS:
    We concluded that certain benzo analogs effectively inhibit fungal growth. They possess chemosensitizing capability to increase efficacy of Kre-Me and thus, could reduce effective dosages of strobilurins and alleviate negative side effects associated with current antifungal practices. OG also exhibits moderate antiaflatoxigenic activity.
    Der Pharma Chemica, 2010,2(6):295.
    Veratraldehyde as Corrosion Inhibitor for Zinc in Different Acid Mediu[Reference: WebLink]

    METHODS AND RESULTS:
    The corrosion inhibition of zinc in 0.1 M HCl and 0.05 M H2SO4 was studied separately by using Veratraldehyde as a corrosion inhibitor. Mass loss and electrochemical studies were part of the investigations. The Inhibition efficiencies were evaluated at different concentrations of the inhibitor at different temperature. The inhibition efficiency increased with increase in inhibitor concentration and decreased with increase in temperature in both the medium. The inhibitor was more active in HCl than in H2SO4. The maximum inhibition efficiency approached at 1000 ppm in both HCl and H2SO4 medium.
    CONCLUSIONS:
    Electrochemical studies show that inhibitor acts a mixed type inhibitor. The inhibitor was found to adsorb on the zinc surface according to the Langmuir adsorption isotherm.
    Phys Chem Chem Phys. 2010 Jul 21;12(27):7603-11.
    Photoenhanced degradation of veratraldehyde upon the heterogeneous ozone reactions.[Pubmed: 20502834]
    Light-induced heterogeneous reactions between gas-phase ozone and Veratraldehyde adsorbed on silica particles were performed.
    METHODS AND RESULTS:
    At an ozone mixing ratio of 250 ppb, the loss of Veratraldehyde largely increased from 1.81 x 10(-6) s(-1) in the dark to 2.54 x 10(-5) s(-1) upon exposure to simulated sunlight (lambda > 300 nm). The observed rates of degradation exhibited linear dependence with the ozone in the dark ozonolysis experiments which change in the non-linear Langmuir-Hinshelwood dependence in the experiments with simultaneous ozone and light exposure of the coated particles. When the coated silica particles were exposed only to simulated sunlight in absence of ozone the loss of Veratraldehyde was about three times higher i.e. 5.97 x 10(-6) s(-1) in comparison to the ozonolysis experiment under dark conditions at 250 ppb ozone mixing ratio, 1.81 x 10(-6) s(-1).These results clearly show that the most important loss of Veratraldehyde occurs under simultaneous ozone and light exposure of the coated silica particles. The main identified product in the heterogeneous reactions between gaseous ozone and adsorbed Veratraldehyde under dark conditions and in presence of light was veratric acid.Carbon yields of veratric acid were calculated and the obtained results indicated that at low ozone mixing ratio (250 ppb) the carbon yield obtained under dark conditions is 70% whereas the carbon yield obtained in the experiments with simultaneous ozone and light exposure of the coated particles is 40%. In both cases the carbon yield of veratric acid exponentially decayed leading to the plateau ( approximately 35% of carbon yield) at an ozone mixing ratio of 6 ppm.
    CONCLUSIONS:
    Two reaction products i.e. 3-hydroxy-4-methoxybenzoic acid and 4-hydroxy-3-methoxybenzoic acid were identified (confirmed with the standards) only in the experiments performed under simultaneous ozonolysis and light irradiation of the particles.
    Appl Environ Microbiol. 1994 Aug;60(8):2811-7.
    Anisaldehyde and Veratraldehyde Acting as Redox Cycling Agents for H(2)O(2) Production by Pleurotus eryngii.[Pubmed: 16349349]

    METHODS AND RESULTS:
    The existence of a redox cycle leading to the production of hydrogen peroxide (H(2)O(2)) in the white rot fungus Pleurotus eryngii has been confirmed by incubations of 10-day-old mycelium with veratryl (3,4-dimethoxybenzyl) and anisyl (4-methoxybenzyl) compounds (alcohols, aldehydes, and acids). Veratraldehyde and anisaldehyde were reduced by aryl-alcohol dehydrogenase to their corresponding alcohols, which were oxidized by aryl-alcohol oxidase, producing H(2)O(2). Veratric and anisic acids were incorporated into the cycle after their reduction, which was catalyzed by aryl-aldehyde dehydrogenase. With the use of different initial concentrations of either veratryl alcohol, Veratraldehyde, or veratric acid (0.5 to 4.0 mM), around 94% of Veratraldehyde and 3% of veratryl alcohol (compared with initial concentrations) and trace amounts of veratric acid were found when equilibrium between reductive and oxidative activities had been reached, regardless of the initial compound used. At concentrations higher than 1 mM, veratric acid was not transformed, and at 1.0 mM, it produced a negative effect on the activities of aryl-alcohol oxidase and both dehydrogenases. H(2)O(2) levels were proportional to the initial concentrations of veratryl compounds (around 0.5%), and an equilibrium between aryl-alcohol oxidase and an unknown H(2)O(2)-reducing system kept these levels steady. On the other hand, the concomitant production of the three above-mentioned enzymes during the active growth phase of the fungus was demonstrated.
    CONCLUSIONS:
    Finally, the possibility that anisaldehyde is the metabolite produced by P. eryngii for the maintenance of this redox cycle is discussed.
    Isonemerosin

    Catalog No: CFN95008
    CAS No: 181524-79-8
    Price: $268/20mg
    Ginsenoside F5

    Catalog No: CFN95034
    CAS No: 189513-26-6
    Price: $298/20mg
    Polygalasaponin XLIX

    Catalog No: CFN95117
    CAS No: 1033593-12-2
    Price: $318/10mg
    Daidzein-4'-glucoside

    Catalog No: CFN95142
    CAS No: 58970-69-7
    Price: $318/5mg
    Marginatoxin

    Catalog No: CFN95174
    CAS No: 1422536-56-8
    Price: $318/10mg
    Eriodictyol 7-O-glucuronide

    Catalog No: CFN95290
    CAS No: 125535-06-0
    Price: $318/10mg
    Sativanone

    Catalog No: CFN95388
    CAS No: 70561-31-8
    Price: $318/10mg
    Pinocembrin 7-O-(4'',6''-hexahydroxydiphenoyl)-beta-D-glucose

    Catalog No: CFN95462
    CAS No: 1825287-22-6
    Price: $318/10mg
    1-Phenylethyl beta-D-glucoside

    Catalog No: CFN95574
    CAS No: 93199-03-2
    Price: $318/5mg
    Methyl ganoderate D

    Catalog No: CFN95581
    CAS No: 97210-12-3
    Price: $318/5mg