Luteolin-7-O-glucuronide

Luteolin-7-O-glucuronide
Product Name Luteolin-7-O-glucuronide
CAS No.: 29741-10-4
Catalog No.: CFN98512
Molecular Formula: C21H18O12
Molecular Weight: 462.36 g/mol
Purity: >=98%
Type of Compound: Flavonoids
Physical Desc.: Yellow powder
Targets: NOS | COX | ROS | NO | α-glucosidase | α-amylase | MMP-1 | MMP-3 | MMP-8 | MMP-9 | MMP-13
Source: The herbs of Marchantia berteroana
Solvent: DMSO, Pyridine, Methanol, Ethanol, etc.
Price: $118/20mg
Luteolin-7-O-glucuronide has anti-inflammatory activity. Luteolin 7-O-glucuronide shows potent α-glucosidase inhibitory effect with IC50 values of 14.7 uM, it also exhibits moderate α-amylase activity with IC50 values 61.5uM.Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.
Inquire / Order: manager@chemfaces.com
Technical Inquiries: service@chemfaces.com
Tel: +86-27-84237783
Fax: +86-27-84254680

Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
  • J Agric Food Chem.2024, 72(15):8784-8797.
  • Food Chemistry: X.2022, 2022.100270
  • Chem Pharm Bull (Tokyo).2017, 65(9):826-832
  • Int J Mol Sci.2023, 24(5):4505.
  • Phytomedicine.2019, 61:152813
  • Plants (Basel).2021, 10(6):1192.
  • Journal of Functional Foods2022, 99: 105331.
  • J Korean Med Obes Res.2023, 23:10-7
  • Nutrients.2019, 12(1):E40
  • Food Research International2023, 113792.
  • Luteolin-7-O-glucuronide

    Catalog No: CFN98512
    CAS No: 29741-10-4
    Price: $118/20mg
    Lonicerin

    Catalog No: CFN95055
    CAS No: 25694-72-8
    Price: $168/10mg
    Luteolin 7-rutinoside

    Catalog No: CFN93556
    CAS No: 20633-84-5
    Price: $218/20mg
    Luteollin 5-glucoside

    Catalog No: CFN98568
    CAS No: 20344-46-1
    Price: Inquiry(manager@chemfaces.com)
    Yuanhuanin

    Catalog No: CFN95127
    CAS No: 83133-14-6
    Price: $318/5mg
    Yuankanin

    Catalog No: CFN95128
    CAS No: 77099-20-8
    Price: $318/5mg
    Luteolin-3-O-beta-D-glucuronide

    Catalog No: CFN93187
    CAS No: 53527-42-7
    Price: $238/10mg
    Luteolin 7-diglucuronide

    Catalog No: CFN70468
    CAS No: 96400-45-2
    Price: Inquiry(manager@chemfaces.com)
    New compound 11

    Catalog No: CFN95351
    CAS No: N/A
    Price: $318/10mg
    Luteolin 7,3'-di-O-glucuronide

    Catalog No: CFN98573
    CAS No: 53965-08-5
    Price: Inquiry(manager@chemfaces.com)
    J Med Food. 2015 Jan;18(1):83-94.
    Quantification of major compounds from Ixeris dentata, Ixeris dentata Var. albiflora, and Ixeris sonchifolia and their comparative anti-inflammatory activity in lipopolysaccharide-stimulated RAW 264.7 cells.[Pubmed: 25383596]
    The aim of the present study was to evaluate the comparative anti-inflammatory activities of Ixeris dentata (ID), Ixeris dentata var. albiflora (IDA), and Ixeris sonchifolia (IS) and to identify the main compounds present in extracts. The anti-inflammatory activity was evaluated through lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 murine macrophages. Five main compounds consisting of chlorogenic acid, caffeic acid, luteolin-7-O-glucoside, Luteolin-7-O-glucuronide, and luteolin were used for simultaneous high-performance liquid chromatography quantification.
    METHODS AND RESULTS:
    The total phenolic content present in ID (30 mg/g GAE), IDA (35.33 mg/g GAE), and IS (43.79 mg/g GAE) was correlated to the corresponding LPS-induced NO production inhibitory effect in RAW 264.7 cells as expressed with IC(50) values 26.19, 21.43, and 7.59 μg/mL, respectively. Luteolin-7-O-glucoside was found as the major compound in ID (8.76 mg/g dry weight) and IDA (10.35 mg/g dry weight) and Luteolin-7-O-glucuronide was the major compound in IS (34.66 mg/g dry weight). Luteolin 7-O-glucoside and Luteolin-7-O-glucuronide inhibited LPS-induced NO production with IC(50) values of 30 and 4.5 μM, respectively. Furthermore, luteolin, luteolin-7-O-glucoside, and luteolin- 7-O-glucuronide suppressed the expression of iNOS and COX-2, and t-BHP-induced ROS generation in LPS-stimulated RAW 264.7 cells.
    CONCLUSIONS:
    These results clearly showed that the anti-inflammatory potential of ID, IDA, and IS extract are primarily due to their contents of luteolin-7-O-glucoside and Luteolin-7-O-glucuronide, respectively.
    Planta Med. 2017 Jul;83(11):901-911.
    Correlating In Vitro Target-Oriented Screening and Docking: Inhibition of Matrix Metalloproteinases Activities by Flavonoids.[Pubmed: 28288492 ]
    Metalloproteases are a family of zinc-containing endopeptidases involved in a variety of pathological disorders. The use of flavonoid derivatives as potential metalloprotease inhibitors has recently increased.Particular plants growing in Sicily are an excellent yielder of the flavonoids luteolin, apigenin, and their respective glycoside derivatives (7-O-rutinoside, 7-O-glucoside, and 7-O-glucuronide).
    METHODS AND RESULTS:
    The inhibitory activity of luteolin, apigenin, and their respective glycoside derivatives on the metalloproteases MMP-1, MMP-3, MMP-13, MMP-8, and MMP-9 was assessed and rationalized correlating in vitro target-oriented screening and in silico docking.The flavones apigenin, luteolin, and their respective glucosides have good ability to interact with metalloproteases and can also be lead compounds for further development. Glycones are more active on MMP-1, -3, -8, and -13 than MMP-9. Collagenases MMP-1, MMP-8, and MMP-13 are inhibited by compounds having rutinoside glycones. Apigenin and luteolin are inactive on MMP-1, -3, and -8, which can be interpreted as a better selectivity for both -9 and -13 peptidases. The more active compounds are apigenin-7-O-rutinoside on MMP-1 and luteolin-7-O-rutinoside on MMP-3. The lowest IC50 values were also found for apigenin-7-O-glucuronide, apigenin-7-O-rutinoside, and Luteolin-7-O-glucuronide. The glycoside moiety might allow for a better anchoring to the active site of MMP-1, -3, -8, -9, and -13.
    CONCLUSIONS:
    Overall, the in silico data are substantially in agreement with the in vitro ones (fluorimetric assay).
    J Agric Food Chem. 2014 Jun 11;62(23):5290-5.
    Bioavailability of hydroxycinnamic acids from Crepidiastrum denticulatum using simulated digestion and Caco-2 intestinal cells.[Pubmed: 24841645]
    Hydroxycinnamic acids have antioxidant properties and potentially beneficial effects on human health. This study investigated the digestive stability, bioaccessibility, and permeability of hydroxycinnamic acids from Crepidiastrum denticulatum using simulated digestion and Caco-2 intestinal cells.
    METHODS AND RESULTS:
    The major compounds of C. denticulatum were determined to be four hydroxycinnamic acids [caftaric acid, chlorogenic acid, chicoric acid, and 3,5-di-O-caffeoylquinic acid (3,5-DCQA)] and one flavonoid (Luteolin-7-O-glucuronide) by high-performance liquid chromatography and electrospray ionization mass spectrometry. Hydroxycinnamic acids from C. denticulatum were rapidly released in the stomach and duodenum phase, maximizing the possibility of absorption in the intestinal Caco-2 cells. The digestive stability and bioaccessibility of hydroxycinnamic acids from C. denticulatum were markedly low after simulated digestion and remained minimal in the soluble fraction of the ileum phase. Unlike the four hydroxycinnamic acids, Luteolin-7-O-glucuronide was stable in terms of digestive stability and bioaccessibility during simulated digestion. The cell permeabilities (P(app A to B)/P(app B to A)) of caftaric acid (0.054) and chlorogenic acid (0.055) were higher than those of chicoric acid (0.011) and 3,5-DCQA (0.006) in general. That of Luteolin-7-O-glucuronide was not detectable, showing its low absorption in Caco-2 cells.
    CONCLUSIONS:
    These results indicate that the rapid release of hydroxycinnamic acids in the stomach and duodenum phase may increase the potential for absorption in Caco-2 cells, and that Luteolin-7-O-glucuronide, which was stable in terms of digestive stability and bioaccessibility, has relatively low absorption compared with hydroxycinnamic acids.
    Inflamm Res. 2013 Jan;62(1):115-26.
    Anti-arthritic activity of the Indian leafy vegetable Cardiospermum halicacabum in Wistar rats and UPLC-QTOF-MS/MS identification of the putative active phenolic components.[Pubmed: 23052184 ]
    The present work was carried out to investigate the free radical scavenging activity of the ethanol extract of C. halicacabum leaves (EECH), to study its antioxidant properties and anti-rheumatic effects in Wistar rats with CFA-induced arthritis, and to profile the phenolic components thereof by LC-MS/MS.
    METHODS AND RESULTS:
    The free radical scavenging activities of the extract was evaluated by NO and superoxide anion scavenging assays. Arthritis was induced to the albino Wistar rats by CFA. Fifteen days after CFA induction, arthritic rats received EECH orally at the doses of 250 and 500 mg/kg daily for 20 days. Diclofenac sodium was used as reference standard. EECH is subjected to LC-MS/MS analysis for the identification of phenolic compounds. The IC(50) value of the EECH to scavenge the NO and superoxide radicals are 83 and 60 μg/ml respectively. Ultrasonography and histology images of hind limb in EECH treated groups confirmed the complete cartilage regeneration. The LC/MS/MS analysis indicated the presence of anti-inflammatory compounds Luteolin-7-O-glucuronide, apigenin-7-O-glucuronide and chrysoeriol.
    CONCLUSIONS:
    These findings lend pharmacological support to the reported folkloric use of C. halicacabum in the treatment and management of painful, arthritic inflammatory conditions.
    1-O-galloyl-6-O-cinnamoylglucose

    Catalog No: CFN95053
    CAS No: 115746-69-5
    Price: $338/5mg
    3'-Angeloyloxy-4'-senecioyloxy-2',3'-dihydrooroselol

    Catalog No: CFN95123
    CAS No: 1221686-60-7
    Price: $398/5mg
    Maculosidin

    Catalog No: CFN95126
    CAS No: 522-19-0
    Price: $413/5mg
    N-trans-caffeoyloctopamine

    Catalog No: CFN95264
    CAS No: 1378868-10-0
    Price: $413/5mg
    Isoedultin

    Catalog No: CFN95273
    CAS No: 43043-08-9
    Price: $318/5mg
    Cannabisin A

    Catalog No: CFN95287
    CAS No: 130508-46-2
    Price: $318/5mg
    Isophysalin G

    Catalog No: CFN95328
    CAS No: 152221-21-1
    Price: $368/5mg
    Physalin X

    Catalog No: CFN95329
    CAS No: 72497-31-5
    Price: $318/5mg
    Dihydrophaseic acid 4'-O-beta-D-glucopyranoside

    Catalog No: CFN95393
    CAS No: 78914-56-4
    Price: $318/5mg
    12-Acetoxy ganoderic acid D

    Catalog No: CFN95535
    CAS No: N/A
    Price: $318/5mg