7-Xylosyltaxol
7-xylosyltaxol is a taxol (Paclitaxel) derivative, has antineoplastic activity.
Inquire / Order:
manager@chemfaces.com
Technical Inquiries:
service@chemfaces.com
Tel:
+86-27-84237783
Fax:
+86-27-84254680
Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to
24 months(2-8C).
Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.
Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com
The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
Anticancer Res.2020, 40(10):5529-5538.
Yakugaku Zasshi.2018, 138(4):571-579
J Food Composition and Analysis2022, 104417.
Egyptian Pharmaceutical Journal2024, epj_205_23.
Nat Prod Sci.2019, 25(3):238
Anesth Pain Med (Seoul).2020, 15(4):478-485.
Nutrients2022, 14(14)2929
Life (Basel).2021, 11(7):616.
Int J Food Sci Nutr.2019, 70(7):825-833
Oncol Rep.2021, 46(1):143.
Related and Featured Products
J Nat Med. 2013 Jul;67(3):512-8.
Development of an indirect competitive enzyme-linked immunosorbent assay (icELISA) using highly specific monoclonal antibody against paclitaxel.[Pubmed:
23007175]
Paclitaxel, the major active component of the yew tree, is used as an important anti-cancer agent.
METHODS AND RESULTS:
To obtain the monoclonal antibody (MAb) against paclitaxel for paclitaxel determination using immunoassay, 7-Xylosyltaxol was conjugated to the carrier protein bovine serum albumin (BSA) to construct the immunogen, and the ratio of hapten in XylTax-BSA conjugate was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. After immunization of mice with this conjugate, hybridomas secreting MAbs against paclitaxel were obtained by fusing the splenocytes with the mouse myeloma cell line SP2/0. After hybridoma screening, the anti-paclitaxel MAb 3A3 was obtained, which showed a relatively high specificity to paclitaxel (cross-reactivities against other naturally occurred taxanes: 7-Xylosyltaxol, 31.8%; cephalomannine, 6.17%; baccatin III, 10-deacetyl-baccatin III, 1-hydroxybaccatin I, 13-acetyl-9-dihydrobaccatin III and 1-acetoxyl-5-deacetyl-baccatin I, <0.11%). Using the MAb 3A3, we established an indirect competitive enzyme-linked immunosorbent assay (icELISA) for paclitaxel determination with a detection range of 0.098-312.5 μg ml(-1). Determination of paclitaxel contents in various yew tree samples with this icELISA resulted in recovery rates ranging from 92 to 94.8%, and intra- and inter-assay variations of 3.6 and 4.7%, respectively.
CONCLUSIONS:
This icELISA provides a valuable method of paclitaxel determination for various purposes.
Ying Yong Sheng Tai Xue Bao. 2012 Oct;23(10):2641-7.
Content and distribution of active components in cultivated and wild Taxus chinensis var. mairei plants.[Pubmed:
23359921]
Taxus chinensis var. mairei is an endemic and endangered plant species in China. The resources of T. chinensis var. mairei have been excessively exploited due to its anti-cancer potential, accordingly, the extant T. chinensis var. mairei population is decreasing.
METHODS AND RESULTS:
In this paper, ultrasonic extraction and HPLC were adopted to determine the contents of active components paclitaxel, 7-Xylosyltaxol and cephalomannine in cultivated and wild T. chinensis var. mairei plants, with the content distribution of these components in different parts of the plants having grown for different years and at different slope aspects investigated. There existed obvious differences in the contents of these active components between cultivated and wild T. chinensis var. mairei plants. The paclitaxel content in the wild plants was about 0.78 times more than that in the cultivated plants, whereas the 7-Xylosyltaxol and cephalomannine contents were slishtly higher in the cultivated plants. The differences in the three active components contents between different parts and tree canopies of the plants were notable, being higher in barks and upper tree canopies. Four-year old plants had comparatively higher contents of paclitaxel, 7-Xylosyltaxol and cephalomannine (0.08, 0.91 and 0.32 mg x g(-1), respectively), and the plants growing at sunny slope had higher contents of the three active components, with significant differences in the paclitaxel and 7-Xylosyltaxol contents and unapparent difference in the cephalomannine content of the plants at shady slope. It was suggested that the accumulation of the three active components in T. chinensis var. mairei plants were closely related to the sunshine conditions. To appropriately increase the sunshine during the artificial cultivation of T. chinensis var. mairei would be beneficial to the accumulation of the three active components in T. chinensis var. mairei plants.