Nicotiflorin
Nicotiflorin shows potent antiglycation activity and neuroprotection effects, it has protective effects on cerebral ischemic damage, reducing memory dysfunction, energy metabolism failure and oxidative stress in multi-infarct dementia model rats.
Inquire / Order:
manager@chemfaces.com
Technical Inquiries:
service@chemfaces.com
Tel:
+86-27-84237783
Fax:
+86-27-84254680
Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to
24 months(2-8C).
Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.
Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com
The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
Biomed Pharmacother.2024, 175:116770.
BMC Complement Altern Med.2016, 16:213
Chemistry of Natural Compounds2018, 54(3):572-576
Regen Biomater.2023, 10:rbad077.
J Chromatogr B Analyt Technol Biomed Life Sci.2019, 1126-1127:121743
Nutrients.2024, 16(7):985.
J Food Biochem.2021, 45(7):e13774.
Separations2023, 10(4), 231.
Curr Issues Mol Biol.2023, 45(3):2136-2156.
Toxins (Basel).2022, 14(12):824.
Related and Featured Products
Plant Physiol Biochem. 2012 Aug;57:23-31.
Nicotiflorin, rutin and chlorogenic acid: phenylpropanoids involved differently in quantitative resistance of potato tubers to biotrophic and necrotrophic pathogens.[Pubmed:
22677447]
Physiological and molecular mechanisms underlying quantitative resistance of plants to pathogens are still poorly understood, but could depend upon differences in the intensity or timing of general defense responses.
METHODS AND RESULTS:
This may be the case for the biosynthesis of phenolics which are known to increase after elicitation by pathogens. We thus tested the hypothesis that differences in quantitative resistance were related to differential induction of phenolics by pathogen-derived elicitors. Five potato cultivars (Solanum tuberosum, L.) spanning a range of quantitative resistance were treated with a concentrated culture filtrate (CCF) of Phytophthora infestans or purified lipopolysaccharides (LPS) from Pectobacterium atrosepticum. The kinetic of phenolics accumulation was followed and a set of typical phenolics was identified: chlorogenic acid, phenolamides and flavonols including rutin (quercetin-3-O-rutinoside) and Nicotiflorin (kaempferol-3-O-rutinoside). Our results showed that CCF but not LPS induced differential accumulation of major phenolics among cultivars. Total phenolics were related with resistance to P. atrosepticum but not to P. infestans. However, Nicotiflorin was inversely related with resistance to both pathogens. Rutin, but not Nicotiflorin, inhibited pathogen growth in vitro at physiological concentrations.
CONCLUSIONS:
These data therefore suggest that (i) several phenolics are candidate markers for quantitative resistance in potato, (ii) some of these are pathogen specific although they are produced by a general defense pathway, (iii) resistance marker molecules do not necessarily have antimicrobial activity, and (iv) the final content of these target molecules-either constitutive or induced-is a better predictor of resistance than their inducibility by pathogen elicitors.
Pharmacol Biochem Behav. 2007 Apr;86(4):741-8.
Protective effects of Nicotiflorin on reducing memory dysfunction, energy metabolism failure and oxidative stress in multi-infarct dementia model rats.[Pubmed:
17448528]
The present study aimed to determine whether Nicotiflorin, a natural flavonoid extracted from coronal of Carthamus tinctorius, has a protective effect on cerebral multi-infarct dementia in rats.
METHODS AND RESULTS:
The multi-infarct dementia model rats were prepared by injecting man-made micro-thrombi into the right hemisphere. The administration groups were treated once daily with 30, 60 and 120 mg/kg Nicotiflorin (i.g.) from 5 days before ischemia operation to 3 days after the operation for biochemical examination, 10 days for Morris water maze study and morphological observations and 20 days for eight-arm radial maze task. 2,3,5-triphenyltetrazolium chloride (TTC) staining showed that infarct volume of each Nicotiflorin administration group was much smaller than that of vehicle-treated multi-infarct dementia group, and hematoxylin and eosin (HE) staining showed that histopathological abnormalities of each Nicotiflorin group were also much lighter than that of vehicle-treated multi-infarct dementia group. Each Nicotiflorin group showed much better spatial memory performance in Morris water maze tests and eight-arm radial maze task compared with the vehicle-treated multi-infarct dementia group, significantly attenuated the elevation of lactic acid and malondialdehyde (MDA) contents and the decrease in lactate dehydrogenase (LDH), Na(+)K(+)ATPase, Ca(2+)Mg(2+)ATPase and superoxide dismutase (SOD) activity in the brain tissue which was composed of striatum, cortex and hippocampus of the ischemia hemisphere at day 3 after ischemia operation.
CONCLUSIONS:
These results suggest that Nicotiflorin has protective effects on reducing memory dysfunction, energy metabolism failure and oxidative stress in multi-infarct dementia model rats.
J Ethnopharmacol. 2006 Aug 11;107(1):143-50.
Nicotiflorin reduces cerebral ischemic damage and upregulates endothelial nitric oxide synthase in primarily cultured rat cerebral blood vessel endothelial cells.[Pubmed:
16806761]
Nicotiflorin is a flavonoid glycoside extracted from a traditional Chinese medicine Flos Carthami.
METHODS AND RESULTS:
In the current study, we investigated the neuroprotective effect of Nicotiflorin on a transient focal cerebral ischemia-reperfusion model in rats. Nicotiflorin (2.5-10 mg/kg) administered after onset of ischemia markedly reduced brain infarct volume by 24.5-63.2% and neurological deficits. Also the effect of Nicotiflorin on endothelial nitric oxide synthase (eNOS) activity, mRNA and protein expression after hypoxia-reoxygenation (H-R) treatment was investigated in an in vitro model mimic cerebrum ischemia-reperfusion in vivo. After total 4 h hypoxia and 12 h reoxygenation, eNOS activity, mRNA and protein levels in the primarily cultured rat cerebral blood vessel endothelial cells treated with Nicotiflorin (25-100 microg/ml) 2 h after onset of hypoxia were significantly higher than eNOS activity, mRNA and protein levels in the pure H-R cells and also higher than eNOS activity, mRNA and protein levels in cells cultured under normoxic conditions. The results demonstrated that Nicotiflorin had a protective effect against cerebral ischemic damage.
CONCLUSIONS:
The results also gave an important elucidation for the mechanism underlying the protective effect at the cellular level.
Med Chem. 2012 May;8(3):415-20.
Synthesis and antiglycation activity of kaempferol-3-O-rutinoside (nicotiflorin).[Pubmed:
22530897]
METHODS AND RESULTS:
Kaempferol-3-O-α-L-rhamanopyranosyl-(1'''-6'')-β-D-glucopyranoside (1) (Nicotiflorin or kaempferol-3-O-rutinoside), isolated from the aerial parts of Osyris wightiana Wall. ex Wight, exhibited a potent antiglycation activity in vitro. A short and efficient route to kaempferol-3-O-rutinoside (1) is also described in this paper. To study the structure-activity relationship, few other derivatives of kaempferol were also evaluated for their antiglycation activity. Moreover the cytotoxicity analysis was also performed for these compounds.
CONCLUSIONS:
The Structure-Activity Relationship (SAR) studies showed that sugar derivatives of kaempferol possess a promising antiglycation activity.