Mulberroside F
Mulberroside F shows inhibitory effects on tyrosinase activity and on the melanin formation of melan-a cells, it also exhibits superoxide scavenging activity that is involved in the protection against auto-oxidation, suggests that mulberroside F may be used as a skin whitening agent.
Inquire / Order:
manager@chemfaces.com
Technical Inquiries:
service@chemfaces.com
Tel:
+86-27-84237783
Fax:
+86-27-84254680
Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to
24 months(2-8C).
Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.
Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com
The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
Am J Chin Med.2016, 44(8):1719-1735
J. Pharm. Res. Int.2022, 34(58): pp.1-14.
Cell.2022, 185(23):4298-4316.e21.
Redox Biology2024, 103197.
Int J Mol Sci.2023, 24(18):14077.
Viruses.2021, 13(11):2118.
Mediators Inflamm. 2016, 2016:6189590
Archives of Biological sciences2022, 00:21-21
Journal of Life Science2017, 233-240
Chin J Appl. Physiol.2019, 35(3):283-288
Related and Featured Products
Biol Pharm Bull. 2002 Aug;25(8):1045-8.
Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynthesis.[Pubmed:
12186407]
METHODS AND RESULTS:
The current study was carried out to investigate the in vitro effects of an 85% methanol extract of dried Morus alba leaves on melanin biosynthesis, which is closely related to hyperpigmentation. These extracts inhibited the tyrosinase activity that converts dopa to dopachrome in the biosynthetic process of melanin. Mulberroside F (moracin M-6, 3'-di-O-beta-D-glucopyranoside), which was obtained after the bioactivity-guided fractionation of the extracts, showed inhibitory effects on tyrosinase activity and on the melanin formation of melan-a cells. This compound also exhibited superoxide scavenging activity that is involved in the protection against auto-oxidation. But its activity was low and was weaker than of kojic acid.
CONCLUSIONS:
These results suggest that Mulberroside F isolated from mulberry leaves might be used as a skin whitening agent.
J Agric Food Chem . 2012 Mar 7;60(9):2299-308.
In vitro pharmacokinetic characterization of mulberroside A, the main polyhydroxylated stilbene in mulberry (Morus alba L.), and its bacterial metabolite oxyresveratrol in traditional oral use[Pubmed:
22225542]
Abstract
Mulberroside A (MulA) is one of the main bioactive constituents in mulberry (Morus alba L.). This study examined the determining factors for previously reported oral pharmacokinetic profiles of MulA and its bacterial metabolite oxyresveratrol (OXY) on in vitro models. When incubated anaerobically with intestinal bacteria, MulA underwent rapid deglycosylation and generated two monoglucosides and its aglycone OXY sequentially. MulA exhibited a poor permeability and predominantly traversed Caco-2 cells via passive diffusion; yet, the permeation of OXY across Caco-2 cells was much more rapid and involved efflux (both p-glycoprotein and MRPs)-mediated mechanisms. Moreover, OXY underwent extensive hepatic glucuronidation; yet, the parent MulA was kept intact in liver subcellular preparations. There was insignificant species difference in intestinal bacterial conversion of MulA and the extent of OXY hepatic glucuronidation between humans and rats, while OXY exhibited a distinct positional preference of glucuronidation in the two species. Overall, these findings revealed a key role of intestinal bacterial conversion in absorption and systemic exposure of MulA and its resultant bacterial metabolite OXY in oral route in humans and rats and warranted further investigational emphasis on OXY and its hepatic metabolites for understanding the benefits of mulberry.