Licoisoflavone B
Licoisoflavone B is an inhibitor of germ tube growth in the arbuscular mycorrhizal (AM) fungus Gigaspora margarita, it can strongly inhibit germ tube growth at 0.63 ug/disc, and it can completely inhibit hyphal branching induced by a lupin strigolactone, orobanchyl acetate, in G. margarita at 0.16 ug/disc. Licoisoflavone B exhibits inhibitory activity against the growth of Helicobacter pylori in vitro, it also shows anti-H. pylori activity against a clarithromycin (CLAR) and amoxicillin (AMOX)-resistant strain.Licoisoflavone B exhibits antimutagenic activity against carcinogenic N-methyl-N-nitrosourea (MNU), it is important to prevent DNA damage by N-nitrosamines for cancer chemoprevention.
Inquire / Order:
manager@chemfaces.com
Technical Inquiries:
service@chemfaces.com
Tel:
+86-27-84237783
Fax:
+86-27-84254680
Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to
24 months(2-8C).
Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.
Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com
The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
Heliyon.2024, 10(7):e28755.
Toxicol Mech Methods.2021, 1-12.
BMC Plant Biol.2021, 21(1):60.
J Immunol.2023, ji2200727.
Molecules.2019, 24(10):E1930
Dent Mater J. 2024, dmj.2023-294.
Proc Natl Acad Sci USA.2016, 113(30):E4407-1
Front Pharmacol.2021, 12:761922.
Nutrients.2024, 16(7):965.
Int J Mol Sci.2022, 23(10):5468.
Related and Featured Products
Biol Trace Elem Res. 2001 Aug;81(2):169-75.
Inhibitory effects of licoisoflavones A and B and sophoraisoflavone A of Sophra mooracroftiana Beth ex Baker on copper-ion-induced protein oxidative modification of mice brain homogenate, in vitro.[Pubmed:
11554397]
METHODS AND RESULTS:
We present the results of an in vitro investigation of the inhibitory effects of licoisoflavone A and Licoisoflavone B and sophoraisoflavone A isolated from Sophra mooracroftiana BETH ex BAKER on copper-induced protein oxidative modification of mice brain homogenate in vitro. Although inhibitory effect of sophoraisoflavone A was stronger than those of licoisoflavone A and Licoisoflavone B, genistein as a related isoflavone, and mannitol as a hydroxy radical scavenger, inhibitory effects of licoisoflavone A and Licoisoflavone B were weaker than those of genistein and mannitol.
CONCLUSIONS:
These results demonstrated that the difference of inhibitory effects are dependent on the relation between chemical structures of these isoflavones, such as hydroxy group or benzopyran, and oxidative stress.
Life Sci. 2002 Aug 9;71(12):1449-63.
Anti-Helicobacter pylori flavonoids from licorice extract.[Pubmed:
12127165]
Licorice is the most used crude drug in Kampo medicines (traditional Chinese medicines modified in Japan). The extract of the medicinal plant is also used as the basis of anti-ulcer medicines for treatment of peptic ulcer.
METHODS AND RESULTS:
Among the chemical constituents of the plant, glabridin and glabrene (components of Glycyrrhiza glabra), licochalcone A (G. inflata), licoricidin and Licoisoflavone B (G. uralensis) exhibited inhibitory activity against the growth of Helicobacter pylori in vitro.
These flavonoids also showed anti-H. pylori activity against a clarithromycin (CLAR) and amoxicillin (AMOX)-resistant strain. We also investigated the methanol extract of G. uralensis. From the extract, three new isoflavonoids (3-arylcoumarin, pterocarpan, and isoflavan) with a pyran ring, gancaonols A[bond]C, were isolated together with 15 known flavonoids.
CONCLUSIONS:
Among these compounds, vestitol, licoricone, 1-methoxyphaseollidin and gancaonol C exhibited anti-H. pylori activity against the CLAR and AMOX-resistant strain as well as four CLAR (AMOX)-sensitive strains. Glycyrin, formononetin, isolicoflavonol, glyasperin D, 6,8-diprenylorobol, gancaonin I, dihydrolicoisoflavone A, and gancaonol B possessed weaker anti-H. pylori activity. These compounds may be useful chemopreventive agents for peptic ulcer or gastric cancer in H. pylori-infected individuals.
Phytochemistry. 2010 Nov;71(16):1865-71.
Lupin pyranoisoflavones inhibiting hyphal development in arbuscular mycorrhizal fungi.[Pubmed:
20813384]
White lupin (Lupinus albus L.), a non-host plant for arbuscular mycorrhizal (AM) fungi in the typically mycotrophic family Fabaceae, has been investigated for root metabolites that inhibit hyphal development in AM fungi.
METHODS AND RESULTS:
Four known pyranoisoflavones, Licoisoflavone B (1), sophoraisoflavone A (2), alpinumisoflavone (3) and 3'-hydroxy-4'-O-methylalpinumisoflavone (4), together with three previously unknown pyranoisoflavones, lupindipyranoisoflavone A (5), 10'-hydroxyLicoisoflavone B (6) and 10'-hydroxysophoraisoflavone A (7) were isolated from the root exudates of white lupin as an inhibitor of germ tube growth in the AM fungus Gigaspora margarita. Pyranoisoflavones 1, 2 and 3 strongly inhibited germ tube growth at 0.63, 1.25 and 0.63 μg/disc, respectively. The remaining compounds 4-7 were either moderate or weak inhibitors that inhibited germ tube growth at concentrations higher than 10 μg/disc.
CONCLUSIONS:
Licoisoflavone B (1) and sophoraisoflavone A (2) completely inhibited hyphal branching induced by a lupin strigolactone, orobanchyl acetate, in G. margarita at 0.16 and 0.63 μg/disc, respectively.
Genes Environ. 2017 Jan 6;39:5.
Isolation and characterization of antimutagenic components of Glycyrrhiza aspera against N-methyl-N-nitrosourea.[Pubmed:
28074112 ]
A powdered ethanolic extract of Glycyrrhiza aspera root exhibits antimutagenic activity against N-methyl-N-nitrosourea (MNU) based on the Ames assay with Salmonella typhimurium TA1535. The aim of this study was to identify the antimutagenic components of the powdered ethanolic extract of G. aspera root.
METHODS AND RESULTS:
The powdered ethanolic extract of G. aspera root was sequentially suspended in n-hexane, carbon tetrachloride, dichloromethane, ethyl acetate, and ethanol, and each solvent soluble fraction and the residue were assayed for antimutagenic activity against MNU in S. typhimurium TA1535. The dichloromethane soluble fraction exhibited the highest antimutagenicity and was fractionated several times by silica gel chromatography. The fraction with the highest antimutagenic activity was further purified using HPLC, and the fractions were assayed for antimutagenicity against MNU in S. typhimurium TA1535. Finally, five components with antimutagenic activity against MNU were identified as glyurallin A, glyasperin B, licoricidin, 1-methoxyphaseollin, and Licoisoflavone B.
CONCLUSIONS:
The five components were demonstrated to possess an antigenotoxic effect against carcinogenic MNU for the first time. It is important to prevent DNA damage by N-nitrosamines for cancer chemoprevention.