Ganoderic acid C2

Ganoderic acid C2
Product Name Ganoderic acid C2
CAS No.: 103773-62-2
Catalog No.: CFN92054
Molecular Formula: C30H46O7
Molecular Weight: 518.7 g/mol
Purity: >=98%
Type of Compound: Triterpenoids
Physical Desc.: Powder
Targets: Histamine Receptor | Immunology & Inflammation related
Source: The fruit body of Ganoderma lucidum.
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Price: $660/10mg
Ganoderic acid C2 has anti-inflammatory,and anti-tumor-promoting activities. Ganoderic acid C2 can inhibit histamine release, it also has inhibitory effects on the induction of Epstein-Barr Virus early antigen.
Inquire / Order: manager@chemfaces.com
Technical Inquiries: service@chemfaces.com
Tel: +86-27-84237783
Fax: +86-27-84254680

Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
  • Molecules.2019, 24(10):E1926
  • Korean Herb. Med. Inf. 2016, 4(1):35-42
  • J Agric Food Chem.2018, 66(1):351-358
  • Journal of Chromatography A2020, 460942
  • ARPN Journal of Eng.& Applied Sci.2016, 2199-2204
  • Process Biochemistry2019, 87:213-220
  • Biomed Chromatogr.2016, 30(10):1573-81
  • Phytomedicine.2018, 40:37-47
  • Saudi Pharm J.2019, 27(1):145-153
  • J Food Compos Anal2017, 62:197-204
  • Methyl lucidente G

    Catalog No: CFN95058
    CAS No: 102607-20-5
    Price: $413/5mg
    Ganoderic acid C1

    Catalog No: CFN92053
    CAS No: 95311-97-0
    Price: Inquiry(manager@chemfaces.com)
    Ganoderic acid LM2

    Catalog No: CFN90297
    CAS No: 508182-41-0
    Price: $488/5mg
    Ganoderic acid D

    Catalog No: CFN90292
    CAS No: 108340-60-9
    Price: $368/10mg
    12-Hydroxyganoderic acid D

    Catalog No: CFN91921
    CAS No: 942950-96-1
    Price: $543/10mg
    Ganoderic acid M

    Catalog No: CFN90747
    CAS No: 100761-17-9
    Price: Inquiry(manager@chemfaces.com)
    Ganoderic acid Z

    Catalog No: CFN90295
    CAS No: 294674-09-2
    Price: Inquiry(manager@chemfaces.com)
    Ganoderic acid AM1

    Catalog No: CFN90296
    CAS No: 149507-55-1
    Price: Inquiry(manager@chemfaces.com)
    Ethyl ganoderate J

    Catalog No: CFN92576
    CAS No: 1189555-95-0
    Price: Inquiry(manager@chemfaces.com)
    Ganoderic acid B

    Catalog No: CFN92052
    CAS No: 81907-61-1
    Price: $328/10mg
    J Pharm Biomed Anal. 2013 Mar 5;75:64-73.
    Structural characterization of minor metabolites and pharmacokinetics of ganoderic acid C2 in rat plasma by HPLC coupled with electrospray ionization tandem mass spectrometry.[Pubmed: 23312386]

    METHODS AND RESULTS:
    The metabolites and pharmacokinetics of Ganoderic acid C2 (GAC2), a bioactive triterpenoid in Ganoderma lucidum in rat plasma were investigated by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Totally, ten minor phase I metabolites of GAC2 were characterized after oral administration of GAC2, on the basis of their mass fragmentation pathways or direct comparison with authentic compounds by high-performance liquid chromatography coupled with diode array detection and electrospray ion trap tandem mass spectrometry (HPLC-DAD-ESI-MS(n)), and liquid chromatography coupled with electrospray ionization hybrid ion trap and time-of-flight mass spectrometry (LC-ESI-IT-TOF/MS) methods. Moreover, a rapid and specific method for quantification of GAC2 in rat plasma after oral administration was developed by using a liquid-liquid extraction procedure and HPLC-ESI-MS/MS analysis.
    CONCLUSIONS:
    It is the first time to report the metabolites and pharmacokinetics of GAC2.
    Planta Med. 2010 Oct;76(15):1691-3.
    Inhibition of aldose reductase in vitro by constituents of Ganoderma lucidum.[Pubmed: 20379959 ]
    CHCl(3) extract of the fruiting body of Ganoderma lucidum was found to show inhibitory activity on human aldose reductase in vitro. From the acidic fraction, potent human aldose reductase inhibitors, Ganoderic acid C2 (1) and ganoderenic acid A (2), were isolated together with three related compounds. It was found that the free carboxyl group of Ganoderic acid C2 and ganoderenic acid A is essential in eliciting the inhibitory activity considering the much lower activity of their methyl esters.
    Bioorg Med Chem Lett. 2011 Dec 15;21(24):7295-7.
    Structure-activity relationships of ganoderma acids from Ganoderma lucidum as aldose reductase inhibitors.[Pubmed: 22047696]
    A series of lanostane-type triterpenoids, known as ganoderma acids were isolated from the fruiting body of Ganoderma lucidum. Some of these compounds were identified as active inhibitors of the in vitro human recombinant aldose reductase. To clarify the structural requirement for inhibition, some structure-activity relationships were determined.
    METHODS AND RESULTS:
    Our structure-activity studies of ganoderma acids revealed that the OH substituent at C-11 is an important feature and the carboxylic group in the side chain is essential for the recognition of aldose reductase inhibitory activity. Moreover, double bond moiety at C-20 and C-22 in the side chain contributes to improving aldose reductase inhibitory activity. In the case of Ganoderic acid C2, all of OH substituent at C-3, C-7 and C-15 is important for potent aldose reductase inhibition.
    CONCLUSIONS:
    These results provide an approach to understanding the structural requirements of ganoderma acids from G. lucidum for aldose reductase inhibitor. This understanding is necessary to design a new-type of aldose reductase inhibitor.
    Isoschaftoside

    Catalog No: CFN92029
    CAS No: 52012-29-0
    Price: $288/20mg
    Vicenin -1

    Catalog No: CFN92030
    CAS No: 35927-38-9
    Price: $338/5mg
    Fargesol

    Catalog No: CFN95027
    CAS No: 128855-64-1
    Price: $318/20mg
    Arjungenin

    Catalog No: CFN95039
    CAS No: 58880-25-4
    Price: $318/10mg
    Bruceoside A

    Catalog No: CFN95080
    CAS No: 63306-30-9
    Price: $318/5mg
    8-Hydroxypinoresinol diglucoside

    Catalog No: CFN95083
    CAS No: 112747-99-6
    Price: $318/5mg
    7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (DPHB)

    Catalog No: CFN95139
    CAS No: 79559-60-7
    Price: $268/20mg
    ent-16beta,17-dihydroxy-9(11)-kauren-19-oic acid

    Catalog No: CFN95172
    CAS No: 55483-24-4
    Price: $318/10mg
    Polygalin J

    Catalog No: CFN95175
    CAS No: N/A
    Price: $318/5mg
    3-O-methylellagic acid 4'-O-alpha-L-rhamnopyranoside

    Catalog No: CFN95228
    CAS No: 51768-39-9
    Price: $413/5mg