Dihydrokaempferol

Dihydrokaempferol
Product Name Dihydrokaempferol
CAS No.: 724434-08-6
Catalog No.: CFN91628
Molecular Formula: C15H12O6
Molecular Weight: 288.25 g/mol
Purity: >=98%
Type of Compound: Flavonoids
Physical Desc.: Powder
Source: The herbs of Bauhinia championii
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Price:
Dihydrokaempferol has antioxidant, anti-inflammatory, improving pancreatic damage and hepatoprotective effects, and can effectively promote cell apoptosis.
Inquire / Order: manager@chemfaces.com
Technical Inquiries: service@chemfaces.com
Tel: +86-27-84237783
Fax: +86-27-84254680

Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
  • Int. J. Mol. Sci.2023, 24(20),15294.
  • Int Immunopharmacol.2019, 71:361-371
  • Nutraceutical Research . 2021, 19(1),p90-105.
  • J Biochem Mol Toxicol.2021, 35(5):e22731.
  • BMC Complement Altern Med.2016, 16:213
  • BMC Complement Altern Med.2019, 19(1):325
  • Sci Rep.2021, 11(1):10931.
  • Nutr Res Pract.2020, 14(3):203-217.
  • Pharmacol Rep.2020, 72(2):472-480.
  • JPC-Journal of Planar Chromatography 2017, 30(2)
  • Pratensein

    Catalog No: CFN90805
    CAS No: 2284-31-3
    Price: $388/5mg
    Decursin

    Catalog No: CFN98509
    CAS No: 5928-25-6
    Price: $138/20mg
    Myricitrin

    Catalog No: CFN99840
    CAS No: 17912-87-7
    Price: $40/20mg
    Osthol

    Catalog No: CFN98765
    CAS No: 484-12-8
    Price: $30/20mg
    Isoscoparin

    Catalog No: CFN90965
    CAS No: 20013-23-4
    Price: $138/10mg
    Life Sci . 2020 Nov 15;261:118340.
    Dihydrokaempferol (DHK) ameliorates severe acute pancreatitis (SAP) via Keap1/Nrf2 pathway[Pubmed: 32860805]
    Severe acute pancreatitis (SAP) is a non-bacterial inflammatory disease that clinically causes a very high rate of mortality. Dihydrokaempferol (DHK) is a natural flavonoid extracted from Bauhinia championii. Our research aimed to establish the treatment function of DHK on SAP-induced pancreas injury and delve into its potential mechanism. In this study, SAP was induced by caerulein (CER) and Lipopolysaccharide (LPS). DHK was administered orally at different doses of 20, 40, or 80 mg/kg. Results from serum amylase/lipase, pancreas hematoxylin-eosin staining technique, pancreas malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) showed the therapeutic effect of DHK in a mice SAP model. MTT revealed DHK alleviated CER + LPS induced cytotoxicity in a dose-dependent manner in the pancreatic acinar cells of mice. Next, we verified DHK suppressed the level of Keap1 and promoted transcriptional activation of nuclear Nrf2 in the presence of CER + LPS. The molecular docking study suggested that there is a potential interaction between DHK and Keap1. To further look at the role of Keap1 using in vitro and in vivo models, Keap1 overexpression adenovirus (ad-Keap1) was performed. The results revealed that ad-Keap1suppressed the nuclear translocation of Nrf2 which is enhanced by DHK, and suppressed the antioxidative functionality of DHK both in mice and cell models. Collectively, this research demonstrated that DHK bettered the SAP induced pancreas injury by regulating the Keap1/Nrf2 pathway and regulating oxidative stress injury.
    Evid Based Complement Alternat Med . 2018 Dec 2;2018:9806160.
    Apoptosis Effects of Dihydrokaempferol Isolated from Bauhinia championii on Synoviocytes[Pubmed: 30622621]
    Bauhinia championii (Benth.) Benth. is a traditional medicinal plant used in China to treat rheumatoid arthritis (RA), especially in She ethnic minority group. This study focused on the active constituents from the rattan of B. championii (Benth.) Benth., which possess potential apoptosis effects. A conventional phytochemical separation method for the isolation of compounds from the ethyl acetate extract of B. championii was developed. The procedure involved extraction, liquid-liquid partitioning with ethyl acetate, and subsequent compound purification, respectively. Additionally, cell viability of Dihydrokaempferol found abundantly in it was evaluated in vitro by MTS, and the antiapoptosis effect was evaluated by annexin V/PI staining (Flow Cytometry Analysis) and western blot. The results showed that nine flavonoids, and five other compounds, were isolated from the ethyl acetate extract of B. championii and were identified as β-sitosterol (1), 5,6,7,3',4',5'-hexamethoxyflavone (2), 3',4',5,7-tetrahydroxyflavone (3), 5,7,3',4',5'-pentamethoxyflavone (4), 4'-hydroxy-5,7,3',5'-pentamethoxyflavone (5), apigenin (6), liquiritigenin (7), 5, 7-dihydroxylcoumarin (8), 3',4',5,7, -pentamethoxyflavone (9), n-octadecanoate (10), lupine ketone (11), dibutylphthalate (12), Dihydrokaempferol (13), and 5,7,3',5'-tetrahydroxy-6-methylflavanone (14). Among these compounds, 5-14 were isolated for the first time from B. championii. In addition, apoptosis effects of abundant Dihydrokaempferol were evaluated in vitro. Dihydrokaempferol exhibited inhibitory effects on the proliferation of synoviocytes. Furthermore, Dihydrokaempferol promoted Bax and Bad expression, as well as the cleavage of caspase-9, caspase-3, and PARP. Meanwhile, it inhibited Bcl-2 and Bcl-xL expression. These findings indicate that Dihydrokaempferol isolated from the ethyl acetate extract of B. championii effectively promotes apoptosis, which is an important process through suppression of apoptotic activity. The results are encouraging for further studies on the use of B. championii in the treatment of RA.
    Am J Chin Med . 2021;49(3):705-718.
    Protective Effect of Dihydrokaempferol on Acetaminophen-Induced Liver Injury by Activating the SIRT1 Pathway[Pubmed: 33657990]
    Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF) in the Western world, with limited treatment opportunities. 3,5,7,4[Formula: see text]-Tetrahydroxyflavanone (Dihydrokaempferol, DHK, Aromadendrin) is a flavonoid isolated from Chinese herbs and displays high anti-oxidant and anti-inflammatory capacities. In this study, we investigated the protective effect by DHK against APAP-induced liver injury in vitro and in vivo and the potential mechanism of action. Cell viability assays were used to determine the effects of DHK against APAP-induced liver injury. The levels of reactive oxygen species (ROS), serum alanine/aspartate aminotransferases (ALT/AST), liver myeloperoxidase (MPO), and malondialdehyde (MDA) were measured and analyzed to evaluate the effects of DHK on APAP-induced liver injury. Western blotting, immunofluorescence staining, RT-PCR, and Transmission Electron Microscope were carried out to detect the signaling pathways affected by DHK. Here, we found that DHK owned a protective effect on APAP-induced liver injury with a dose-dependent manner. Meanwhile, Western blotting showed that DHK promoted SIRT1 expression and autophagy, activated the NRF2 pathway, and inhibited the translocation of nuclear p65 (NF-[Formula: see text]B) in the presence of APAP. Furthermore, SIRT1 inhibitor EX-527 aggravated APAP-induced hepatotoxicity when treating with DHK. Molecular docking results suggested potential interaction between DHK and SIRT1. Taken together, our study demonstrates that DHK protects against APAP-induced liver injury by activating the SIRT1 pathway, thereby promoting autophagy, reducing oxidative stress injury, and inhibiting inflammatory responses.
    Life Sci . 2020 Nov 15;261:118340.
    Dihydrokaempferol (DHK) ameliorates severe acute pancreatitis (SAP) via Keap1/Nrf2 pathway[Pubmed: 32860805]
    Severe acute pancreatitis (SAP) is a non-bacterial inflammatory disease that clinically causes a very high rate of mortality. Dihydrokaempferol (DHK) is a natural flavonoid extracted from Bauhinia championii. Our research aimed to establish the treatment function of DHK on SAP-induced pancreas injury and delve into its potential mechanism. In this study, SAP was induced by caerulein (CER) and Lipopolysaccharide (LPS). DHK was administered orally at different doses of 20, 40, or 80 mg/kg. Results from serum amylase/lipase, pancreas hematoxylin-eosin staining technique, pancreas malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) showed the therapeutic effect of DHK in a mice SAP model. MTT revealed DHK alleviated CER + LPS induced cytotoxicity in a dose-dependent manner in the pancreatic acinar cells of mice. Next, we verified DHK suppressed the level of Keap1 and promoted transcriptional activation of nuclear Nrf2 in the presence of CER + LPS. The molecular docking study suggested that there is a potential interaction between DHK and Keap1. To further look at the role of Keap1 using in vitro and in vivo models, Keap1 overexpression adenovirus (ad-Keap1) was performed. The results revealed that ad-Keap1suppressed the nuclear translocation of Nrf2 which is enhanced by DHK, and suppressed the antioxidative functionality of DHK both in mice and cell models. Collectively, this research demonstrated that DHK bettered the SAP induced pancreas injury by regulating the Keap1/Nrf2 pathway and regulating oxidative stress injury.
    9-O-Acetyl-fargesol

    Catalog No: CFN95031
    CAS No: 449172-61-6
    Price: $413/5mg
    (-)-Epiafzelechin 3-O-gallate

    Catalog No: CFN95081
    CAS No: 108907-43-3
    Price: $388/5mg
    Mirificin-4'-O-glucoside

    Catalog No: CFN95091
    CAS No: 168035-01-6
    Price: $288/5mg
    24-Hydroxymomordicine III

    Catalog No: CFN95169
    CAS No: N/A
    Price: $318/5mg
    4,4-di(4-hydroxy-3-methoxyphenly)-2,3-dimethylbutanol

    Catalog No: CFN95200
    CAS No: 913643-31-9
    Price: $368/5mg
    Prionanthoside

    Catalog No: CFN95206
    CAS No: 161842-81-5
    Price: $318/5mg
    Tigloylgomisin O

    Catalog No: CFN95237
    CAS No: 130855-74-2
    Price: $368/5mg
    15-Deoxypulic acid

    Catalog No: CFN95262
    CAS No: 95523-05-0
    Price: $368/5mg
    (2S)-5,7,3',4'-tetramethoxyflavanone

    Catalog No: CFN95406
    CAS No: 74628-43-6
    Price: $318/10mg
    Oxytroflavoside D

    Catalog No: CFN95491
    CAS No: 1391144-83-4
    Price: $318/10mg