alpha-Cyperone

alpha-Cyperone
Product Name alpha-Cyperone
CAS No.: 473-08-5
Catalog No.: CFN99703
Molecular Formula: C15H22O
Molecular Weight: 218.33 g/mol
Purity: >=98%
Type of Compound: Sesquiterpenoids
Physical Desc.: Oil
Targets: PGE | COX | NO | NOS | NF-kB | p65 | NF-kB | IL Receptor | ERK | TNF-α | JNK | p38MAPK
Source: The rhizomes of Cyperus rotundus L.
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Price: $80/20mg
Alpha-cyperone is associated with the down-regulation of COX-2,IL-6,Nck-2,Cdc42 and Rac1, resulting in reduction of inflammation. which would be highly beneficial for treatment of inflammatory diseases such as AD. Alpha-cyperone is a promising inhibitor of Hla production by S. aureus and protects lung cells from this bacterium, it also shows inhibitory effects on adherence and invasion of avian pathogenic Escherichia coli O78 to chicken type II pneumocytes.
Inquire / Order: manager@chemfaces.com
Technical Inquiries: service@chemfaces.com
Tel: +86-27-84237783
Fax: +86-27-84254680

Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
  • Food Chemistry: X.2022, 2022.100270
  • J Agric Food Chem.2015, 63(44):9869-78
  • Mol Microbiol.2019, 112(1):317-332
  • Front Pharmacol.2021, 12:635510.
  • Food Chemistry: X2023, 101032.
  • Enzyme Microb Technol.2022, 161:110111.
  • Korean J. Crop Sci.2018, 63(2):131-139
  • Institut Pasteur Korea2020, doi: 10.21203.
  • Biomed Pharmacother.2019, 111:262-269
  • Separations2021, 8(6),80.
  • Ligucyperonol

    Catalog No: CFN96346
    CAS No: 105108-20-1
    Price: $318/5mg
    Canusesnol A

    Catalog No: CFN97296
    CAS No: 816456-90-3
    Price: Inquiry(manager@chemfaces.com)
    Eudesma-3,11-dien-2-one

    Catalog No: CFN89327
    CAS No: 86917-79-5
    Price: Inquiry(manager@chemfaces.com)
    Beta-Rotunol

    Catalog No: CFN96335
    CAS No: 24405-57-0
    Price: Inquiry(manager@chemfaces.com)
    Voleneol

    Catalog No: CFN97192
    CAS No: 70389-88-7
    Price: Inquiry(manager@chemfaces.com)
    beta-Eudesmol

    Catalog No: CFN99537
    CAS No: 473-15-4
    Price: $288/20mg
    1beta-Hydroxy-beta-eudesmol

    Catalog No: CFN96795
    CAS No: 83217-89-4
    Price: Inquiry(manager@chemfaces.com)
    Eudesm-4(15)-ene-3alpha,11-diol

    Catalog No: CFN96161
    CAS No: 113773-90-3
    Price: Inquiry(manager@chemfaces.com)
    4-Hydroxy-11,12,13-trinor-5-eudesmen-7-one

    Catalog No: CFN96334
    CAS No: 133369-42-3
    Price: Inquiry(manager@chemfaces.com)
    Oxyphyllenone A

    Catalog No: CFN96801
    CAS No: 363610-34-8
    Price: Inquiry(manager@chemfaces.com)
    Vet Immunol Immunopathol. 2014 May 15;159(1-2):50-7.
    Inhibitory effects of α-cyperone on adherence and invasion of avian pathogenic Escherichia coli O78 to chicken type II pneumocytes.[Pubmed: 24629766]

    METHODS AND RESULTS:
    Avian pathogenic Escherichia coli (APEC) are extra-intestinal pathogenic E. coli, and usually cause avian septicemia through breaching the blood-gas barrier. Type II pneumocytes play an important role of maintaining the function of the blood-gas barrier. However, the mechanism of APEC injuring type II pneumocytes remains unclear. α-cyperone can inhibit lung cell injury induced by Staphylococcus aureus. In order to explore whether α-cyperone regulates the adherence and invasion of APEC-O78 to chicken type II pneumocytes, we successfully cultured chicken type II pneumocytes.
    CONCLUSIONS:
    The results showed that α-cyperone significantly decreased the adherence of APEC-O78 to chicken type II pneumocytes. In addition, α-cyperone inhibited actin cytoskeleton polymerization induced by APEC-O78 through down regulating the expression of Nck-2, Cdc42 and Rac1. These results provide new evidence for the prevention of colibacillosis in chicken.
    J Microbiol Biotechnol. 2012 Aug;22(8):1170-6.
    α-cyperone alleviates lung cell injury caused by Staphylococcus aureus via attenuation of α-hemolysin expression.[Pubmed: 22713997]

    METHODS AND RESULTS:
    In this study, we aimed to evaluate the effect of α- cyperone on S. aureus. We used a hemolysin test to examine the hemolytic activity in supernatants of S. aureus cultured with increasing concentrations of α- cyperone. In addition, we evaluated the production of α- hemolysin (Hla) by Western blotting. Real-time RT-PCR was performed to test the expression of hla (the gene encoding Hla) and agr (accessory gene regulator). Furthermore, we investigated the protective effect of α- cyperone on Hla-induced injury of A549 lung cells by live/ dead and cytotoxicity assays. We showed that in the presence of subinhibitory concentrations of α-cyperone, Hla production was markedly inhibited. Moreover, α- cyperone protected lung cells from Hla-induced injury.
    CONCLUSIONS:
    These findings indicate that α-cyperone is a promising inhibitor of Hla production by S. aureus and protects lung cells from this bacterium. Thus, α-cyperone may provide the basis for a new strategy to combat S. aureus pneumonia.
    J Ethnopharmacol . 2016 Dec 24;194:219-227.
    α-Cyperone of Cyperus rotundus is an effective candidate for reduction of inflammation by destabilization of microtubule fibers in brain[Pubmed: 27353867]
    Abstract Ethnopharmacological relevance: Cyperus rotundus L. (Cyperaceae), commonly known as purple nutsedge or nut grass is one of the most invasive and endemic weeds in tropical, subtropical and temperate regions. This plant has been extensively used in traditional medicine for anti-arthritic, antidiarrheal and antiplatelet properties as well as treatment for several CNS disorders such as epilepsy, depression and inflammatory disorders. Inflammation is evidently occurring in pathologically susceptible regions of the Alzheimer's disease (AD) brain as well as other disorders. Many cellular processes are responsible in chronic inflammation. Microtubule-based inflammatory cell chemotaxis is a well-recognized process that influences production of cytokines and phagocytosis. The effect of α-Cyperone, one of main ingredients of Cyperus rotundus on microtubule assembly and dynamics has not been examined and is the purpose of this investigation. Materials and methods: Microtubules and tubulin were extracted in order to explore their interaction with α-Cyperone by utilization of turbidimetric examinations, intrinsic fluorescence and circular dichroism spectroscopy (CD) studies. The molecular docking analysis was executed in order to facilitate a more detail and stronger evidence of this interaction. The BINding ANAlyzer (BINANA) algorithm was used to evaluate and further substantiate the binding site of α-Cyperone. Results: It was demonstrated that α-Cyperone had a pronounced influence on the tubulin structure, decreased polymerization rate and reduced concentration of polymerized tubulin in vitro. The CD deconvolution analysis concluded that significant conformational changes occurred, demonstrated by a drastic increase in content of β-strands upon binding of α-Cyperone. The fluorescence spectroscopy revealed that a static type of quenching mechanism is responsible for binding of α-Cyperone to tubulin. Upon characterization of various biophysical parameters, it was further deduced that ligand binding was spontaneous and a single site of binding was confirmed. Transmission electron microscopy revealed that upon binding of α-Cyperone to microtubule the number and complexity of fibers were noticeably decreased. The computational analysis of docking suggested that α-Cyperone binds preferably to β-tubulin at a distinct location with close proximity to the GTP binding and hydrolysis site. The ligand interaction with β-tubulin is mostly hydrophobic and occurs at amino acid residues that are exclusively on random coil. The BINANA 1.2.0 algorithm which counts and tallies close molecular interaction by performing defined set of simulations revealed that amino acid residues Arg 48 and Val 62 have registered the highest scores and are possibly crucial in ligand-protein interaction. Conclusion: α-Cyperone binds and interacts with tubulin and is capable of distinctly destabilizing microtubule polymerization. The effect of this interaction could result in reduction of inflammation which would be highly beneficial for treatment of inflammatory diseases such as AD. Keywords: ATP (PubChem CID: 5957); GTP (PubChem CID: 6830); Microtubule polymerization; Molecular docking; Rhizomes of Cyperus rotundus; Tubulin; α-Cyperone; α-Cyperone (PubChem CID: 6452086).
    J Ethnopharmacol. 2013 May 2;147(1):208-14.
    α-Cyperone, isolated from the rhizomes of Cyperus rotundus, inhibits LPS-induced COX-2 expression and PGE2 production through the negative regulation of NFκB signalling in RAW 264.7 cells.[Pubmed: 23500883]
    The rhizomes of Cyperus rotundus (Cyperaceae) have been used in Asian traditional medicine for the treatment of several inflammatory diseases. However, the anti-inflammatory effects of α-cyperone, a major active compound of Cyperus rotundus, are poorly understood.
    METHODS AND RESULTS:
    PGE2 and cytokines released from cells were measured using an EIA assay kit. The expression of iNOS, COX-2, TNF-α, and IL-6 was measured by real-time RT-PCR and/or Western blot analysis. A luciferase assay was performed to measure the effect of α-cyperone on NFκB activity. The n-hexane fraction of the 80% EtOH extract from the rhizomes of Cyperus rotundus was found to inhibit both NO and PGE2 production in RAW 264.7 cells. α-Cyperone isolated from the n-hexane fraction significantly inhibited PGE2 production by suppressing the LPS-induced expression of inducible COX-2 at both the mRNA and the protein levels. In contrast, α-cyperone had little effect on NO production and iNOS expression. Additionally, α-cyperone downregulated the production and mRNA expression of the inflammatory cytokine IL-6. Moreover, treatment with α-cyperone suppressed the transcriptional activity of NFκB and the nuclear translocation of the p65 NFκB subunit in LPS-induced RAW 264.7 cells.
    CONCLUSIONS:
    The anti-inflammatory activity of α-cyperone is associated with the down-regulation of COX-2 and IL-6 via the negative regulation of the NFκB pathway in LPS-stimulated RAW 264.7 cells.
    Immunopharmacol Immunotoxicol. 2013 Apr;35(2):215-24.
    Xiang-Qi-Tang and its active components exhibit anti-inflammatory and anticoagulant properties by inhibiting MAPK and NF-κB signaling pathways in LPS-treated rat cardiac microvascular endothelial cells.[Pubmed: 23171279 ]
    Xiang-Qi-Tang (XQT) is a Chinese herbal formula containing Cyperus rotundus, Astragalus membranaceus and Andrographis paniculata. alpha-Cyperone (CYP), astragaloside IV (AS-IV) and andrographolide (AND) are the three major active components in this formula. XQT may modulate the inflammatory or coagulant responses. We therefore assessed the effects of XQT on lipopolysaccharide (LPS)-induced inflammatory model of rat cardiac microvascular endothelial cells (RCMECs).
    METHODS AND RESULTS:
    XQT, CYP, AS-IV and AND inhibited the production of tumor necrosis factor alpha (TNF-α), intercellular cell adhesion molecule-1 (ICAM-1) and plasminogen activator inhibitor-1 (PAI-1), and up-regulated the mRNA expression of Kruppel-like factor 2 (KLF2). XQT and CYP inhibited the secretion of tissue factor (TF). To further explore the mechanism, we found that XQT, or its active components CYP, AS-IV and AND significantly inhibited extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK) and p38 phosphorylation protein expression as well as decreased the phosphorylation levels of nuclear factor κB (NF-κB) p65 proteins in LPS-stimulated RCMECs. These results suggested that XQT and its active components inhibited the expression of inflammatory and coagulant mediators via mitogen-activated protein kinase (MAPKs) and NF-κB signaling pathways.
    CONCLUSIONS:
    These findings may contribute to future research on the action mechanisms of this formula, as well as therapy for inflammation- or coagulation-related diseases.
    Epimedin K

    Catalog No: CFN95019
    CAS No: 174286-13-6
    Price: $288/5mg
    Buddlenoid A

    Catalog No: CFN95025
    CAS No: 142750-32-1
    Price: $368/5mg
    Ampelopsin G

    Catalog No: CFN95148
    CAS No: 151487-09-1
    Price: $318/5mg
    3,7,23,24-tetrahydroxycucurbita-5,25-dien-19-al

    Catalog No: CFN95168
    CAS No: 1446447-97-7
    Price: $318/5mg
    6'-Feruloylnodakenin

    Catalog No: CFN95202
    CAS No: 131623-14-8
    Price: $318/10mg
    11-Deoxyisomogroside V

    Catalog No: CFN95288
    CAS No: 1628293-32-2
    Price: $368/10mg
    3',4',5',5,7-Pentamethoxyflavanone

    Catalog No: CFN95414
    CAS No: 479672-30-5
    Price: $218/20mg
    Rhamnocitrin 3-galactoside

    Catalog No: CFN95474
    CAS No: 99878-05-4
    Price: $318/10mg
    Quercetin-3-O-[alpha-L-rhamnose-(1->2)-beta-D-glucopyranosyl]-5-O-beta-D-glucopyranoside

    Catalog No: CFN95506
    CAS No: 1309795-36-5
    Price: $318/5mg
    5-O-Coumaroylquinic acid

    Catalog No: CFN95507
    CAS No: 32451-86-8
    Price: $318/5mg