Coenzyme Q10
Coenzyme Q10, an essential cofactor of the electron transport chain, has neuroprotective effect in the cerebral ischemia via as a potent antioxidant and oxygen derived free radicals scavenger. Treatment with coenzyme Q10 in patients with myocardial infarction (MI) may be beneficial in patients with high risk of atherothrombosis. The coenzyme Q10 and alpha-lipoic acid supplementation can improve bladder function after outlet obstruction. The combination of Coenzyme Q10 and creatine may be useful in the treatment of neurodegenerative diseases such as Parkinson's disease and Huntington's Diseases. Coenzyme Q10 supplementation improves endothelial function of conduit arteries of the peripheral circulation in dyslipidaemic patients with Type II diabetes, the mechanism could involve increased endothelial release and/or activity of nitric oxide due to improvement in vascular oxidative stress.
Inquire / Order:
manager@chemfaces.com
Technical Inquiries:
service@chemfaces.com
Tel:
+86-27-84237783
Fax:
+86-27-84254680
Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to
24 months(2-8C).
Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.
Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com
The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
Molecules.2022, 27(21):7514.
Acta Pharm Sin B.2015, 5(4):323-9.
Metabolites.2023, 13(5):625.
Biochem Systematics and Ecology2017, 11-18
Appl. Sci.2020, 10(23), 8729
Anal Chim Acta.2018, 1039:162-171
Front Endocrinol (Lausanne).2020, 11:568436.
Drug Test Anal.2018, 10(10):1579-1589
Molecules.2019, 24(1):E159
Proc Natl Acad Sci USA.2016, 113(30):E4407-1
Related and Featured Products
Oxid Med Cell Longev. 2015;2015:867293.
Coenzyme Q10 Inhibits the Aging of Mesenchymal Stem Cells Induced by D-Galactose through Akt/mTOR Signaling.[Pubmed:
25789082]
Increasing evidences indicate that reactive oxygen species are the main factor promoting stem cell aging. Recent studies have demonstrated that Coenzyme Q10 (CoQ10) plays a positive role in organ and cellular aging. However, the potential for CoQ10 to protect stem cell aging has not been fully evaluated, and the mechanisms of cell senescence inhibited by CoQ10 are still poorly understood. Our previous study had indicated that D-galactose (D-gal) can remarkably induce mesenchymal stem cell (MSC) aging through promoting intracellular ROS generation.
METHODS AND RESULTS:
In this study, we showed that CoQ10 could significantly inhibit MSC aging induced by D-gal. Moreover, in the CoQ10 group, the expression of p-Akt and p-mTOR was clearly reduced compared with that in the D-gal group. However, after Akt activating by CA-Akt plasmid, the senescence-cell number in the CoQ10 group was significantly higher than that in the control group.
CONCLUSIONS:
These results indicated that CoQ10 could inhibit D-gal-induced MSC aging through the Akt/mTOR signaling.
Iran Red Crescent Med J. 2014 Dec 1;16(12):e18852.
Coenzyme q10 administration in community-acquired pneumonia in the elderly.[Pubmed:
25763241]
Community-acquired pneumonia (CAP) is generally considered a major cause of morbidity and mortality in the elderly.
This study aimed to assess the efficacy of adjunctive Coenzyme Q10 (CoQ10) in the treatment of elderly CAP.
METHODS AND RESULTS:
Hospitalized elderly patients with CAP (diagnosed by using defined clinical and radiological criteria) were randomized to receive oral CoQ10 (200 mg/d) or placebo for 14 days, along with antibiotics. Primary and secondary outcomes on days 3, 7, and 14 were measured. Disease severity was scored using CURB-65 index. Statistical analysis was performed using SPSS and P value < 0.05 was considered significant.
We enrolled 150 patients for this research. Then, 141 patients, including 70 patients in the trial group and 71 patients in the control group were analyzed. Mean age of the trial and control groups were 67.6 ± 7.2 years and 68.7 ± 7.9 years, respectively. Clinical cure at days 3 and 7 were 24 (34.3%) and 62 (88.6%) in the trial group (P value = 0.6745) and 22 (31%) and 52 (73.2%) in the placebo group (P value = 0.0209). Patients on CoQ10 had faster defervescence (P value = 0.0206) and shorter hospital stay (P value = 0.0144) compared with the placebo group. The subgroup analysis of the patients with severe pneumonia showed differences in clinical cure at day 14. Treatment failure was less in CoQ10 group than in the placebo group (10% versus 22.5% and P value = 0.0440). Adverse events in two groups were few and similar.
CONCLUSIONS:
CoQ10 administration has no serious side effects and can improve outcome in hospitalized elderly CAP; therefore, we recommend it as an adjunctive treatment in elderly patients.
Diabetologia. 2002 Mar;45(3):420-6.
Coenzyme Q(10) improves endothelial dysfunction of the brachial artery in Type II diabetes mellitus.[Pubmed:
11914748 ]
We assessed whether dietary supplementation with coenzyme Q(10) improves endothelial function of the brachial artery in patients with Type II (non-insulin-dependent) diabetes mellitus and dyslipidaemia.
METHODS AND RESULTS:
A total of 40 patients with Type II diabetes and dyslipidaemia were randomized to receive 200 mg of coenzyme Q(10) or placebo orally for 12 weeks. Endothelium-dependent and independent function of the brachial artery was measured as flow-mediated dilatation and glyceryl-trinitrate-mediated dilatation, respectively. A computerized system was used to quantitate vessel diameter changes before and after intervention. Arterial function was compared with 18 non-diabetic subjects. Oxidative stress was assessed by measuring plasma F(2)-isoprostane concentrations, and plasma antioxidant status by oxygen radical absorbance capacity.
The diabetic patients had impaired flow-mediated dilation [3.8 % (SEM 0.5) vs 6.4 % (SEM 1.0), p = 0.016], but preserved glyceryl-trinitrate-mediated dilation, of the brachial artery compared with non-diabetic subjects. Flow-mediated dilation of the brachial artery increased by 1.6 % (SEM 0.3) with coenzyme Q(10) and decreased by -0.4 % (SEM 0.5) with placebo (p = 0.005); there were no group differences in the changes in pre-stimulatory arterial diameter, post-ischaemic hyperaemia or glyceryl-trinitrate-mediated dilation response. Coenzyme Q(10) treatment resulted in a threefold increase in plasma coenzyme Q(10) (p < 0.001) but did not alter plasma F(2)-isoprostanes, oxygen radical absorbance capacity, lipid concentrations, glycaemic control or blood pressure.
CONCLUSIONS:
Coenzyme Q(10) supplementation improves endothelial function of conduit arteries of the peripheral circulation in dyslipidaemic patients with Type II diabetes. The mechanism could involve increased endothelial release and/or activity of nitric oxide due to improvement in vascular oxidative stress, an effect that might not be reflected by changes in plasma F(2)-isoprostane concentrations.
Immunopharmacol Immunotoxicol. 2015 Mar 10:1-8.
Attenuating effects of coenzyme Q10 and amlodipine in ulcerative colitis model in rats.[Pubmed:
25753843]
Ulcerative colitis is a chronic inflammatory bowel disease. Recent studies reported a pivotal role of elevated intracellular calcium in this disorder. Coenzyme Q10 (CoQ10) and amlodipine are known to maintain cellular energy, decrease intracellular calcium concentration in addition to their antioxidant and anti-inflammatory properties.
The aim of this study was to evaluate the possible protective effects of CoQ10, amlodipine and their combination on ulcerative colitis.
METHODS AND RESULTS:
Colitis was induced in rats by intracolonic injection of 3% acetic acid. CoQ10 (10 mg/kg), amlodipine (3 mg/kg) and their combination were administered for 8 consecutive days before induction of colitis.
Our results showed that administration of CoQ10, amlodipine and their combination decreased colon tissue malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), prostaglandin E2 (PGE2), myeloperoxidase (MPO) and heat shock protein (HSP70) levels induced by intracolonic injection of acetic acid and restored many of the colon structure in histological examination. On the other hand, they increased superoxide dismutase (SOD) activity, adenosine-5'-triphosphate (ATP) and interleukin-10 (IL-10) colonic contents.
CONCLUSIONS:
Administration of either CoQ10 or amlodipine was found to protect against acetic acid-induced colitis. Moreover, their combination was more effective than individual administration of either of them. The protective effect of CoQ10 and amlodipine may be in part via their antioxidant, anti-inflammatory and energy restoration properties.
J Urol. 2008 Nov;180(5):2234-40.
The beneficial effect of coenzyme Q10 and lipoic acid on obstructive bladder dysfunction in the rabbit.[Pubmed:
18804800 ]
Recent evidence indicates that ischemia and reperfusion are major etiological factors in the bladder dysfunction that occurs after partial bladder outlet obstruction. Coenzyme Q10 and alpha-lipoic acid are found naturally in mitochondria and act as potent antioxidants. We investigated the beneficial effects of Coenzyme Q10 plus alpha-lipoic acid in a rabbit model of bladder outlet obstruction.
METHODS AND RESULTS:
Twenty male rabbits were divided into 5 groups. Group 1 served as control and group 2 received three weeks of Coenzyme Q10 plus alpha-lipoic acid supplementation. Rabbits in group 3 underwent surgical partial bladder outlet obstruction for duration of four weeks and groups 4 and 5 were obstructed for seven weeks. In group 5, Coenzyme Q10 plus alpha-lipoic acid supplementation was given following 4 weeks obstruction and continued till the end of the seven weeks. The contractile responses to various agents were determined. The protein nitration and carbonylation levels were studied by immunoblotting. Nerve function was determined by choline acetyltransferase activity and nerve density.
The contractile responses to different forms of stimulations, including field stimulation, ATP, carbachol and KCl all showed decreases following 4 and 7 weeks obstruction. Treatment with Coenzyme Q10 plus alpha-lipoic acid significantly restored contractile responses to all forms of stimulation. Treatment also had mitochondrial and neuronal effects and reduced protein nitration and carbonylation. Histologically there was less detrusor muscle hypertrophy.
CONCLUSIONS:
The current study clearly demonstrates that Coenzyme Q10 and alpha-lipoic acid supplementation can improve bladder function after outlet obstruction.