Aegeline

Aegeline
Product Name Aegeline
CAS No.: 456-12-2
Catalog No.: CFN91133
Molecular Formula: C18H19NO3
Molecular Weight: 297.4 g/mol
Purity: >=98%
Type of Compound: Alkaloids
Physical Desc.: Powder
Targets: PPARγ | C/EBPα | FAS | hMSCs
Source: The herbs of Cannabis sativa L.
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Price: $30/20mg
Aegeline has anti-diabetic and anti-dyslipidemic activities, it inspired synthesis of novel amino alcohol and thiazolidinedione hybrids with antiadipogenic activity in 3T3-L1 cells, it also inspired synthesis of novel β3-AR agonist improves insulin sensitivity in vitro and in vivo models of insulin resistance. Aegeline mimics the yeast SNARE protein Sec22p in suppressing α-synuclein and Bax toxicity in yeast.
Inquire / Order: manager@chemfaces.com
Technical Inquiries: service@chemfaces.com
Tel: +86-27-84237783
Fax: +86-27-84254680

Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
  • Molecules.2021, 26(16):4722.
  • SRM Institute of Sci&Tech2022, 34(1): 32-37
  • Vietnam J. Chem.2023, 61(3),308-317
  • Molecules.2023, 28(3):1313.
  • ACS Omega.2023, 9(1):1278-1286.
  • Front Endocrinol (Lausanne).2020, 11:568436.
  • Phytomedicine.2019, 67:153159
  • Front Pharmacol.2021, 12:690113.
  • Research J. Pharm. and Tech.2020, 13(7):3059-3064.
  • Int J Cosmet Sci.2023, 45(2):155-165.
  • N-trans-Sinapoyltyramine

    Catalog No: CFN91137
    CAS No: 200125-11-7
    Price: $318/10mg
    N-benzoyltyramine

    Catalog No: CFN91563
    CAS No: 41859-54-5
    Price: $318/10mg
    N-methyl cinnamamide

    Catalog No: CFN95757
    CAS No: 25695-84-5
    Price: $318/5mg
    4-Hydroxycinnamamide

    Catalog No: CFN99895
    CAS No: 194940-15-3
    Price: Inquiry(manager@chemfaces.com)
    (-)-alpha,beta-Dihydroxy-N-methyl-N-[(1Z)-2-phenyle thenyl]benzenepropanamide

    Catalog No: CFN95733
    CAS No: 1374793-40-4
    Price: $318/10mg
    Lansiumamide B

    Catalog No: CFN95718
    CAS No: 121817-37-6
    Price: $318/10mg
    Lansiumamide C

    Catalog No: CFN95721
    CAS No: 121817-38-7
    Price: $318/10mg
    N-p-trans-Coumaroyltyramine

    Catalog No: CFN98494
    CAS No: 36417-86-4
    Price: $268/10mg
    N-trans-p-Coumaroyltyrosine

    Catalog No: CFN95279
    CAS No: 77201-66-2
    Price: $318/10mg
    N-p-coumaroyl-N'-caffeoylputrescine

    Catalog No: CFN99238
    CAS No: 1138156-77-0
    Price: Inquiry(manager@chemfaces.com)
    Bioorg Med Chem Lett. 2019 Feb 1;29(3):454-460.
    Aegeline, a natural product from the plant Aegle marmelos, mimics the yeast SNARE protein Sec22p in suppressing α-synuclein and Bax toxicity in yeast.[Pubmed: 30579794 ]
    Herein, we have identified yeast Sec22p (ySec22p), a SNARE protein essential for endoplasmic reticulum to Golgi trafficking, as a suppressor of Bax-induced yeast apoptosis and corroborated published observations that ySec22p suppresses α-synuclein's toxicity in yeast. It has been suggested that compounds which enhance expression, in neurons, of human homologues of ySec22p (Sec22Bp/Sec22p/Sec22A) would prevent synucleinopathies, such as Parkinson's disease.
    METHODS AND RESULTS:
    With the aim of finding a small molecule that would mimic ySec22p, a library of natural products consisting of 394-compounds was screened using yeast cells that express either human α-synuclein or human Bax. The antioxidant Aegeline, an alkaloid-amide occurring in the leaves of the plant Aegle marmelos Correa, was the only molecule that overcame apoptosis induced by both α-synuclein and Bax in yeast. Besides, Aegeline also prevented growth block in cells expressing the more toxic A53T α-synuclein mutant. Restoration of cell growth occurred through inhibition of increased ROS levels, mitochondrial membrane potential loss and nuclear DNA fragmentation, characteristics of apoptosis manifested in α-synuclein or Bax-expressing cells.
    CONCLUSIONS:
    These results highlight the importance of yeast systems to identify rapidly molecules that may prevent the onset of apoptosis that occurs in Parkinson's disease.
    Eur J Med Chem. 2018 Jan 1;143:780-791.
    Aegeline inspired synthesis of novel amino alcohol and thiazolidinedione hybrids with antiadipogenic activity in 3T3-L1 cells.[Pubmed: 29220798 ]
    Excess adiposity is a hallmark of obesity, which is caused due to an imbalance between energy intake and energy consumed. Obesity is often associated with several metabolic disorders like dyslipidemia, cardiovascular diseases and type 2 diabetes. Earlier, our group had reported natural product Aegeline (amino-alcohol) isolated from the plant Aegle marmelos as an anti-diabetic and anti-dyslipidemic compound.
    METHODS AND RESULTS:
    With this background, we synthesized a series of novel amino alcohol and thiazolidinedione hybrid molecules and studied their antiadipogenic activity. As a result, we have identified a potent hybrid compound 12c as an inhibitor of adipocyte differentiation. The compound 12c inhibits lipid accumulation and adipogenesis in 3T3-L1 preadipocyte cell line. Exposure of compound 12c blocks mitotic clonal expansion and arrests cells in S-phase of cell cycle. Detailed analysis showed that compound 12c decreases expression of two major transcription factors that are involved in adipocyte differentiation, PPARγ, C/EBPα, and other adipogenesis associated genes like aP2 and FAS.
    CONCLUSIONS:
    Thus, we concluded that compound 12c shows potential ability to inhibit adipocyte differentiation which can be used therapeutically for the treatment of obesity and its associated metabolic disorders.
    Metabolism. 2018 Aug;85:1-13.
    Aegeline inspired synthesis of novel β3-AR agonist improves insulin sensitivity in vitro and in vivo models of insulin resistance.[Pubmed: 29524448 ]
    In our drug discovery program of natural product, earlier we have reported Aegeline that is N-acylated-1-amino-2- alcohol, which was isolated from the leaves of Aeglemarmelos showed anti-hyperlipidemic activity for which the QSAR studies predicted the compound to be the β3-AR agonist, but the mechanism of its action was not elucidated. In our present study, we have evaluated the β3-AR activity of novel N-acyl-1-amino-3-arylopropanol synthetic mimics of Aegeline and its beneficial effect in insulin resistance. In this study, we have proposed the novel pharmacophore model using reported molecules for antihyperlipidemic activity. The reported pharmacophore features were also compared with the newly developed pharmacophore model for the observed biological activity.
    METHODS AND RESULTS:
    Based on 3D pharmacophore modeling of known β3AR agonist, we screened 20 synthetic derivatives of Aegeline from the literature. From these, the top scoring compound 10C was used for further studies. The in-slico result was further validated in HEK293T cells co-trransfected with human β3-AR and CRE-Luciferase reporter plasmid for β3-AR activity.The most active compound was selected and β3-AR activity was further validated in white and brown adipocytes differentiated from human mesenchymal stem cells (hMSCs). Insulin resistance model developed in hMSC derived adipocytes was used to study the insulin sensitizing property. 8 week HFD fed C57BL6 mice was given 50 mg/Kg of the selected compound and metabolic phenotyping was done to evaluate its anti-diabetic effect. As predicted by in-silico 3D pharmacophore modeling, the compound 10C was found to be the most active and specific β3-AR agonist with EC50 value of 447 nM. The compound 10C activated β3AR pathway, induced lipolysis, fatty acid oxidation and increased oxygen consumption rate (OCR) in human adipocytes. Compound 10C induced expression of brown adipocytes specific markers and reverted chronic insulin induced insulin resistance in white adipocytes. The compound 10C also improved insulin sensitivity and glucose tolerance in 8 week HFD fed C57BL6 mice.
    CONCLUSIONS:
    This study enlightens the use of in vitro insulin resistance model close to human physiology to elucidates the insulin sensitizing activity of the compound 10C and edifies the use of β3AR agonist as therapeutic interventions for insulin resistance and type 2 diabetes.
    Lucidenic acid D2

    Catalog No: CFN95020
    CAS No: 98665-16-8
    Price: $268/5mg
    Kakkalide

    Catalog No: CFN95052
    CAS No: 58274-56-9
    Price: $260/10mg
    Daidzein-4',7-diglucoside

    Catalog No: CFN95094
    CAS No: 53681-67-7
    Price: $288/10mg
    Isorubrofusarin 10-gentiobioside

    Catalog No: CFN95119
    CAS No: 200127-93-1
    Price: $338/10mg
    5-Hydroxy-1-(4-hydroxyphenyl)-7-phenyl-3-heptanone (AO 2210)

    Catalog No: CFN95137
    CAS No: 105955-04-2
    Price: $268/20mg
    Bruceantinol B

    Catalog No: CFN95216
    CAS No: 1822332-33-1
    Price: $318/5mg
    2-Methoxyfuranoguaia-9-ene-8-one

    Catalog No: CFN95220
    CAS No: 88010-62-2
    Price: $318/10mg
    10-O-trans-p-Feruloylscandoside

    Catalog No: CFN95392
    CAS No: 1428268-72-7
    Price: $318/10mg
    (2S)-5,7,3',4'-tetramethoxyflavanone

    Catalog No: CFN95406
    CAS No: 74628-43-6
    Price: $318/10mg
    New compound 21

    Catalog No: CFN95560
    CAS No: N/A
    Price: $413/5mg