6-Hydroxy-2-(2-phenylethyl)chromone
Reference standards.
Inquire / Order:
manager@chemfaces.com
Technical Inquiries:
service@chemfaces.com
Tel:
+86-27-84237783
Fax:
+86-27-84254680
Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to
24 months(2-8C).
Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.
Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com
The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
Journal of Ginseng Research2023, 12.004.
J Nat Med.2018, 72(3):734-744
Sci Rep. 2024, 14(1):70.
Chem. of Vegetable Raw Materials2020, 97-105
Biomed Chromatogr.2019, 8:e4774
Molecules.2020, 25(9):2081.
Reprod Toxicol.2020, 96:1-10.
HortTechnology2016, 26(6):816-819
Molecules.2019, 24(17):E3127
Antioxidants (Basel).2021, 10(11):1831.
Related and Featured Products
Molecules. 2017 Apr 25;22(5). pii: E686.
Relationship between Expression of Chalcone Synthase Genes and Chromones in Artificial Agarwood induced by Formic Acid Stimulation Combined with Fusarium sp. A2 Inoculation.[Pubmed:
28441359 ]
Agarwood (gaharu) is a fragrant resin produced in the heartwood of resinous Gyrinops and Aquilaria species.
METHODS AND RESULTS:
Artificial agarwood samples were obtained from Aquilaria sinensis (Lour.) Gilg using formic acid (FA) stimulation combined with Fusarium sp. A2 inoculation. The relationship between the expression of chalcone synthase genes (CHS) and dynamic changes in chromone content was explored in resin-deposited parts of the trunks of A. sinensis. CHS gene expression levels were detected by qRT-PCR analysis. The chemical composition of agarwood obtained from the heartwood of A. sinensis before and within 1 year after induction was determined by GC-MS. After induction with FA stimulation combined with F. sp. A2 inoculation, the CHS1 gene showed relatively high expression, whereas the CHS2 gene showed low expression. The relative gene expression level of CHS1 peaked at 12 months, with a 153.1-fold increase, and the dominant period of the CHS2 gene expression was 10 months with a 14.13-fold increase. Moreover, chromones were not detected until after 2 months, and a large proportion of chromone compounds were detected after 4 months. Chromone content increased with time and peaked at 12 months. CHS1 gene expression was significantly correlated with
6-Hydroxy-2-(2-phenylethyl)chromone accumulation, and CHS2 gene expression was significantly correlated with 5-hydroxy-6-methoxy-2-(2-phenylethyl)chromone accumulation. CHS gene expression was extremely sensitive to FA stimulation combined with F. sp. A2 inoculation and responded to late-onset injury. CHS genes expression also preceded the chromone accumulation.
CONCLUSIONS:
This work laid the foundation for studies on the mechanism by which genes regulate chromone biosynthesis pathways during the formation of agarwood resin in A. sinensis.