Methyl salicylate

Methyl salicylate
Product Name Methyl salicylate
CAS No.: 119-36-8
Catalog No.: CFN98549
Molecular Formula: C8H8O3
Molecular Weight: 152.15 g/mol
Purity: >=98%
Type of Compound: Phenols
Physical Desc.: Oil
Targets: Estrogen receptor | NF-kB | TNF-α | Progestogen receptor
Source: The leaves of Cassia acutifolia Delile
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Price: $30/20mg
Methyl salicylate is a common herbivore-induced plant volatile that, when applied to crops, has the potential to enhance natural enemy abundance and pest control. Methyl salicylate has both stimulatory and inhibitory actions on TRPV1 channels, it shows analgesic effects.
Inquire / Order: manager@chemfaces.com
Technical Inquiries: service@chemfaces.com
Tel: +86-27-84237783
Fax: +86-27-84254680

Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
  • Foods.2022, 12(1):136.
  • Int J Mol Sci.2021, 22(16):8641.
  • Pharmaceutics2022, 14(2),376.
  • J Control Release.2021, 336:159-168.
  • Sci Rep.2018, 8:9267
  • Appl. Sci. 2021, 11(22),10569
  • J Pain Res.2022, 15:3469-3478.
  • Int J Mol Sci.2023, 25(1):283.
  • Phytomedicine.2015, 22(14):1262-8
  • Phytother Res.2015, 29(7):1088-96
  • Methyl salicylate

    Catalog No: CFN98549
    CAS No: 119-36-8
    Price: $30/20mg
    Methyl 2,6-dihydroxybenzoate

    Catalog No: CFN92655
    CAS No: 2150-45-0
    Price: $40/20mg
    6-(beta-D-glucopyranosyloxy)-Salicylic acid methyl ester

    Catalog No: CFN99087
    CAS No: 108124-75-0
    Price: Inquiry(manager@chemfaces.com)
    2,6-Dimethoxybenzoic acid

    Catalog No: CFN99607
    CAS No: 1466-76-8
    Price: $30/20mg
    Benzyl 2,6-dimethoxybenzoate

    Catalog No: CFN92793
    CAS No: 34328-54-6
    Price: Inquiry(manager@chemfaces.com)
    Methyl 2,4-dihydroxyphenylacetate

    Catalog No: CFN96486
    CAS No: 67828-42-6
    Price: Inquiry(manager@chemfaces.com)
    2',4'-Dihydroxy-6'-methoxyacetophenone

    Catalog No: CFN98488
    CAS No: 3602-54-8
    Price: $100/5mg
    Ethyl 2,4,6-trihydroxybenzoate

    Catalog No: CFN96091
    CAS No: 90536-74-6
    Price: Inquiry(manager@chemfaces.com)
    Environ Microbiol. 2015 Apr;17(4):1365-76.
    Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.[Pubmed: 25181478]
    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology.
    METHODS AND RESULTS:
    Bacillus subtilis formed mucoid colonies specifically in response to Methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to Methyl salicylate. Bacillus subtilis did not induce plant Methyl salicylate production, indicating that the most probable source of Methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum.
    CONCLUSIONS:
    We propose that B. subtilis may sense plants under pathogen attack via Methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere.
    Drug Test Anal. 2014 Jun;6 Suppl 1:67-73.
    Hair analysis as a useful procedure for detection of vapour exposure to chemical warfare agents: simulation of sulphur mustard with methyl salicylate.[Pubmed: 24817050 ]
    Chemical warfare agents (CWA) are highly toxic compounds which have been produced to kill or hurt people during conflicts or terrorist attacks. Despite the fact that their use is strictly prohibited according to international convention, populations' exposure still recently occurred. Development of markers of exposure to CWA is necessary to distinguish exposed victims from unexposed ones.
    METHODS AND RESULTS:
    We present the first study of hair usage as passive sampler to assess contamination by chemicals in vapour form. This work presents more particularly the hair adsorption capacity for Methyl salicylate used as a surrogate of the vesicant sulphur mustard. Chemical vapours toxicity through the respiratory route has historically been defined through Haber's law's concentration-time (Ct) product, and vapour exposure of hair to Methyl salicylate was conducted with various times or doses of exposure in the range of incapacitating and lethal Ct products corresponding to sulphur mustard. Following exposure, extraction of Methyl salicylate from hair was conducted by simple soaking in dichloromethane. Methyl salicylate could be detected on hair for vapour concentration corresponding to about one fifth of the sulphur mustard concentration that would kill 50% of exposed individuals (LCt50). The amount of Methyl salicylate recovered from hair increased with time or dose of exposure.
    CONCLUSIONS:
    It showed a good correlation with the concentration-time product, suggesting that hair could be used like a passive sampler to assess vapour exposure to chemical compounds. It introduces great perspectives concerning the use of hair as a marker of exposure to CWA.
    J Am Mosq Control Assoc. 2014 Sep;30(3):199-203.
    Fumigant Activity of 6 Selected Essential Oil Compounds and Combined Effect of Methyl Salicylate And Trans-Cinnamaldehyde Against Culex pipiens pallens.[Pubmed: 25843095]
    We studied the knockdown activity and lethal toxicity of 6 essential oil compounds-Methyl salicylate, linalool, 2-phenethyl alcohol, eugenol, β-citronellol, and trans-cinnamaldehyde-as fumigants against adult female Culex pipiens pallens in the laboratory.
    METHODS AND RESULTS:
    Of the 6 products tested, trans-cinnamaldehyde was the most toxic (LC50  =  0.26 μl/l air, 24 h) with a slow knockdown time (KT95  =  176.5 min at 0.5 μl/l air). Methyl salicylate displayed a lower toxicity (LC50  =  1.17 μl/l air, 24 h) but the fastest knockdown activity (KT95  =  16.8 min) at the sublethal concentration 0.5 μl/l air. Furthermore, the binary mixture of Methyl salicylate and trans-cinnamaldehyde exhibited a combined effect of fast knockdown activity and high toxicity against Cx. p. pallens adults, showing potential for development as natural fumigants for mosquito control.
    Mol Pharmacol. 2009 Feb;75(2):307-17.
    Involvement of transient receptor potential vanilloid subtype 1 in analgesic action of methyl salicylate.[Pubmed: 18987162 ]
    Methyl salicylate (MS) is a naturally occurring compound that is used as a major active ingredient of balms and liniments supplied as topical analgesics. Despite the common use of MS as a pain reliever, the underlying molecular mechanism is not fully understood. Here we characterize the action of MS on transient receptor potential V1 (TRPV1).
    METHODS AND RESULTS:
    In human embryonic kidney 293 cells expressing human TRPV1 (hTRPV1), MS evoked increases of [Ca(2+)](i), which declined regardless of its continuous presence, indicative of marked desensitization. TRPV1 antagonists dose-dependently suppressed the MS-induced [Ca(2+)](i) increase. MS simultaneously elicited an inward current and increase of [Ca(2+)](i) in the voltage-clamped cells, suggesting that MS promoted Ca(2+) influx through the activation of TRPV1 channels. MS reversibly inhibited hTRPV1 activation by polymodal stimuli such as capsaicin, protons, heat, anandamide, and 2-aminoethoxydiphenyl borate. Because both the stimulatory and inhibitory actions of MS were exhibited in capsaicin- and allicin-insensitive mutant channels, MS-induced hTRPV1 activation was mediated by distinct channel regions from capsaicin and allicin. In cultured rat sensory neurons, MS elicited a [Ca(2+)](i) increase in cells responding to capsaicin. MS significantly suppressed nocifensive behavior induced by intraplantar capsaicin in rats.
    CONCLUSIONS:
    The present data indicate that MS has both stimulatory and inhibitory actions on TRPV1 channels and suggest that the latter action may partly underlie the analgesic effects of MS independent of inhibition of cyclooxygenases in vivo.
    Orientalide

    Catalog No: CFN95136
    CAS No: 72704-05-3
    Price: $368/5mg
    24-Hydroxymomordicine III

    Catalog No: CFN95169
    CAS No: N/A
    Price: $318/5mg
    [(1(10)E,2R,4R)]-2-Methoxy-8,12-epoxygemacra-1(10),7,11-trien-6-one

    Catalog No: CFN95198
    CAS No: 75412-95-2
    Price: $318/10mg
    9-Octadecenedioic acid

    Catalog No: CFN95301
    CAS No: 4494-16-0
    Price: $218/5mg
    Solafuranone

    Catalog No: CFN95312
    CAS No: 367965-50-2
    Price: $318/5mg
    Sativanone

    Catalog No: CFN95388
    CAS No: 70561-31-8
    Price: $318/10mg
    3'-Hydroxy-2,4,5-trimethoxydalbergiquinol

    Catalog No: CFN95410
    CAS No: N/A
    Price: $413/5mg
    Benzylpropyl acetate

    Catalog No: CFN95495
    CAS No: 7492-40-2
    Price: $318/5mg
    Ganoderic acid beta

    Catalog No: CFN95537
    CAS No: 217476-76-1
    Price: $413/5mg
    Ganoderic acid GS-1

    Catalog No: CFN95571
    CAS No: 1206781-64-7
    Price: $413/5mg