Ankaflavin
Ankaflavin, isolated from Monascus-Fermented red rice, is a PPARγ agonist with anti-inlfammatory activity. Ankaflavin exhibits selective cytotoxic effect and induces cell death on cancer cells.
Ankaflavin has anti-inflammatory, anti-cancer, antiatherosclerotic, and hypolipidemic effects.
Inquire / Order:
manager@chemfaces.com
Technical Inquiries:
service@chemfaces.com
Tel:
+86-27-84237783
Fax:
+86-27-84254680
Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to
24 months(2-8C).
Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.
Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com
The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
Neurochem Int.2020, 133:104629
Applied Biological Chemistry2020, 63:37.
Molecules2022, 27(14),4462
Appl. Sci.2021, 11(24),12080
Nutr Cancer.2023, 75(1):376-387.
Int J Mol Sci.2023, 24(17):13230.
Food Chem.2019, 276:768-775
Food and Fermentation Industries2018, 44(371)
Front Microbiol.2023, 14:1232039.
Front Nutr.2023, 10:1181135.
Related and Featured Products
Nat Prod Res . 2020 Jun;34(11):1630-1635.
Characterization of ankaflavin from Penicillium aculeatum and its cytotoxic properties[Pubmed:
30587035]
The pigment was extracted from Penicillium aculeatum, purified and characterized as Ankaflavin by spectroscopic analysis. The stability of the pigment was determined under various conditions and was found to possess high stability. The cytotoxicity property of the purified pigment was determined by MTT assay in MCF-7, HCT116 and PC-3 and the studies were compared with its activity in CHOK1 cells. In MCF-7 and in CHOK 1 cells, the pigment exhibited very less toxicity. However, significant cytotoxicity was observed in HCT116 and PC-3 cells with IC50 of 162 μg mL-1 and 85 μg mL-1 for HCT116 and PC-3 cells respectively. In vitro toxicity was tested by haemolysis assay and MTT assay in HEK 293 cells. The pigment showed least cytotoxicity (<5%) at 160 and 320 μg mL-1 concentrations HEK 293 cells and negligible (<5%) toxicity on human erythrocytes at 160 and 320 μg mL-1, the highest concentrations tested.
J Agric Food Chem . 2016 Dec 14;64(49):9326-9334.
Ankaflavin and Monascin Induce Apoptosis in Activated Hepatic Stellate Cells through Suppression of the Akt/NF-κB/p38 Signaling Pathway[Pubmed:
27960292]
The increased proliferation of activated hepatic stellate cells (HSCs) is associated with hepatic fibrosis and excessive extracellular matrix (ECM)-protein production. We examined the inhibitory effects of the Monascus purpureus-fermented metabolites, Ankaflavin and monascin (15 and 30 μM), on the Akt/nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK) signaling pathways in HSC-T6 (activated hepatic stellate cell line). Ankaflavin and monascin (30 μM) induced apoptosis and significantly inhibited cell growth (cell viabilities: 80.2 ± 5.43% and 62.8 ± 8.20%, respectively, versus control cells; P < 0.05). Apoptosis and G1 phase arrest (G1 phase percentages: 76.1 ± 2.85% and 79.9 ± 1.80%, respectively, versus control cells 65.9 ± 4.94%; P < 0.05) correlated with increased p53 and p21 levels and caspase 3 activity and decreased cyclin D1 and Bcl-2-family protein levels (P < 0.05, all cases). The apoptotic effects of Ankaflavin and monascin were HSC-T6-specific, suggesting their potential in treating liver fibrosis.
Free Radic Biol Med . 2012 Dec 1;53(11):2008-2016.
Ankaflavin: a natural novel PPARγ agonist upregulates Nrf2 to attenuate methylglyoxal-induced diabetes in vivo[Pubmed:
23022408]
Ankaflavin (AK) is an active compound having anti-inflammatory, anti-cancer, antiatherosclerotic, and hypolipidemic effects. We have previously reported that AK acts as an antioxidant and antidiabetic drug; however, the mechanism by which AK prevents diabetes remains unknown. Hyperglycemia is associated with protein glycation, which produces advanced glycation end-products (AGEs). Methylglyoxal (MG)-a metabolite of carbohydrates-is believed to cause insulin resistance by inducing inflammation and pancreas damage. In this work, diabetes was induced in Wistar rats (4 weeks of age) by treating them with MG (600 mg/kg bw) for 4 weeks. We observed that AK (10mg/kg bw) exerted peroxisome proliferator-activated receptor-γ (PPARγ) agonist activity, thereby enhancing insulin sensitivity (as indicated by hepatic GLUT2 translocation, PTP1B suppression, and glucose uptake) by downregulating blood glucose and upregulating pancreatic and duodenal homeobox-1 and Maf-A expression and increasing insulin production in MG-induced rats. However, these effects were abolished by the administration of GW9662 (PPARγ antagonist), but the expression of hepatic heme oxygenase-1 (HO-1) and glutamate-cysteine ligase (GCL) was not suppressed in MG-induced rats. Therefore, the nuclear factor erythroid-related factor-2 (Nrf2) activation was investigated. AK did not affect hepatic Nrf2 mRNA or protein expression but significantly increased Nrf2 phosphorylation (serine 40), which was accompanied by increased transcriptional activation of hepatic HO-1 and GCL. These data indicated that AK protected rats from oxidative stress resulting from MG-induced insulin resistance. In contrast, these effects were not detected when the rats were treated with the antidiabetic drug rosiglitazone (10mg/kg bw). Moreover, we found that AK did not inhibit the generation of AGEs in vitro; however, the glutathione (GSH) levels in liver and pancreas of MG-induced rats were elevated in rats administered AK. Therefore, we believe that GSH may lower the MG level, which attenuates the formation of AGEs in the serum, kidney, liver, and pancreas of MG-induced rats. We also found that AK treatment reduced the production of inflammatory factors, such as tumor necrosis factor-α and interleukin-1β. Taken together, the results of our mechanistic study of MG-induced rats suggest that the protective effects of AK against diabetes are mediated by the upregulation of the signaling pathway of Nrf2, which enhances antioxidant activity and serves as a PPARγ agonist to enhance insulin sensitivity.
J Agric Food Chem . 2005 Mar 23;53(6):1949-1954.
Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells[Pubmed:
15769119]
Monascus-fermented red rice has traditionally been used as a natural food colorant or food preservative of meat and fish for centuries. Recently, it has become a popular dietary supplement due to many of its bioactive constituents being discovered. Commercial Monascus-fermented red rice was used in this study. According to the cell-based cytotoxicity assay, a compound with selective cytotoxicity was found and identified as Ankaflavin. Ankaflavin was found to be toxic to human cancer cell lines Hep G2 and A549 with a similar IC50 value of 15 microg/mL, while it posed no significant toxicity to normal MRC-5 and WI-38 cells at the same concentration. For elucidating the possible mode of cell death, Hep G2 cells were treated with Ankaflavin for 48 h to examine the morphological change of the chromatin. Chromosomal condensation and fragmentation were found, and a significant sub-G1 peak was found by flow cytometry. Apoptosis was therefore suggested as the possible mechanism. Monascin, an analogue of Ankaflavin, was also tested in this study. However, it showed no cytotoxicity and did not induce death of Hep G2 cells.
Hepatobiliary Pancreat Dis Int . 2015 Dec;14(6):619-625.
Ankaflavin ameliorates steatotic liver ischemia-reperfusion injury in mice[Pubmed:
26663010]
Background: It is well-known that steatotic liver is more susceptible to ischemia-reperfusion (I/R) injury during liver transplantation, liver resection and other liver surgeries. The increasing incidence of non-alcoholic fatty liver disease (NAFLD) decreases the availability of liver donors. Although steatotic liver is now accepted as a source of liver for transplantation, NAFLD exacerbates the liver injury after liver surgery. The present study was to investigate the protective role of Ankaflavin in steatotic liver I/R injury.
Methods: The model of fatty liver mice was induced with high fat diet in four weeks, Ankaflavin or vehicle (saline) was administrated by gavage once a day for one week. The animals were subjected to partial hepatic I/R. Blood samples were collected to measure serum aminotransferases. The liver tissues were used to examine liver steatosis, apoptosis of hepatocytes, hepatic oxidative stress, Kupffer cells and inflammatory cytokines. The effects of Ankaflavin on inflammatory cytokines were evaluated in isolated Kupffer cells from the steatotic liver.
Results: Ankaflavin reduced liver steatosis in high fat diet mice. Compared with normal mice, I/R induced more damage to the mice with steatosis, such as hepatocyte apoptosis, inflammatory cytokines (TNF-alpha, IL-6 and IL-1 beta), serum aminotransferases and thiobarbituric acid reactive substances. Importantly, Ankaflavin administration significantly attenuated these changes. In addition, Ankaflavin significantly decreased the proliferation of Kupffer cells and the expression of TNF-alpha, IL-6 and IL-1 beta protein in isolated Kupffer cells stimulated by TNF-alpha.
Conclusion: Ankaflavin has protective effects against I/R injury through anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms in fatty livers, these effects are at least partially mediated by inhibiting Kupffer cell functions.