Croceic acid

Croceic acid
Product Name Croceic acid
CAS No.: 27876-94-4
Catalog No.: CFN90226
Molecular Formula: C20H24O4
Molecular Weight: 328.40 g/mol
Purity: >=98%
Type of Compound: Diterpenoids
Physical Desc.: Powder
Targets: COX | NO
Source: The stigmes of Crocus sativus L.
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Price: $60/20mg
Croceic acid is a singlet oxygen quencher.
Inquire / Order: manager@chemfaces.com
Technical Inquiries: service@chemfaces.com
Tel: +86-27-84237783
Fax: +86-27-84254680

Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
  • Int J Mol Sci.2019, 20(8):E1855
  • Int Immunopharmacol. 2020, 83:106403.
  • J Biol Chem.2021, 297(6):101362.
  • Toxicological Research2020, doi: 10.1007.
  • Vojnosanit Pregl2016, 75(00):391-391
  • Int J Mol Sci.2022, 23(23):15213.
  • J AOAC Int.2021, 104(6):1634-1651.
  • Nanjing University of Chinese Medicine2022, 345930.
  • Molecules.2019, 24(4):E709
  • Biochem Pharmacol. 2020, 177:114014.
  • Phytone

    Catalog No: CFN97734
    CAS No: 502-69-2
    Price: $168/20mg
    Phytol

    Catalog No: CFN99630
    CAS No: 150-86-7
    Price: $30/20mg
    Croceic acid

    Catalog No: CFN90226
    CAS No: 27876-94-4
    Price: $60/20mg
    Nemoralisin

    Catalog No: CFN97516
    CAS No: 942480-13-9
    Price: Inquiry(manager@chemfaces.com)
    Retinoic acid

    Catalog No: CFN90026
    CAS No: 302-79-4
    Price: $40/20mg
    Acitretin

    Catalog No: CFN93053
    CAS No: 55079-83-9
    Price: Inquiry(manager@chemfaces.com)
    Crocin I

    Catalog No: CFN99927
    CAS No: 94238-00-3
    Price: $100/20mg
    Crocin II

    Catalog No: CFN99928
    CAS No: 55750-84-0
    Price: $118/20mg
    Bixin

    Catalog No: CFN91597
    CAS No: 6983-79-5
    Price: Inquiry(manager@chemfaces.com)
    Molecules . 2017 Dec 23;23(1):30.
    Saffron: An Old Medicinal Plant and a Potential Novel Functional Food[Pubmed: 29295497]
    Abstract The spice saffron is made from the dried stigmas of the plant Crocus sativus L. The main use of saffron is in cooking, due to its ability to impart colour, flavour and aroma to foods and beverages. However, from time immemorial it has also been considered a medicinal plant because it possesses therapeutic properties, as illustrated in paintings found on the island of Santorini, dated 1627 BC. It is included in Catalogues of Medicinal Plants and in the European Pharmacopoeias, being part of a great number of compounded formulas from the 16th to the 20th centuries. The medicinal and pharmaceutical uses of this plant largely disappeared with the advent of synthetic chemistry-produced drugs. However, in recent years there has been growing interest in demonstrating saffron's already known bioactivity, which is attributed to the main components-crocetin and its glycosidic esters, called crocins, and safranal-and to the synergy between the compounds present in the spice. The objective of this work was to provide an updated and critical review of the research on the therapeutic properties of saffron, including activity on the nervous and cardiovascular systems, in the liver, its antidepressant, anxiolytic and antineoplastic properties, as well as its potential use as a functional food or nutraceutical. Keywords: crocetin esters; crocin; functional food; nutraceutical; picrocrocin; saffron; safranal; therapeutic properties.
    Phytomedicine . 2015 Jan 15;22(1):36-44.
    Intestinal formation of trans-crocetin from saffron extract (Crocus sativus L.) and in vitro permeation through intestinal and blood brain barrier[Pubmed: 25636868]
    Abstract Aims: Extracts of saffron (Crocus sativus L.) have traditionally been used against depressions. Recent preclinical and clinical investigations have rationalized this traditional use. Trans-crocetin, a saffron metabolite originating from the crocin apocarotenoids, has been shown to exert strong NMDA receptor affinity and is thought to be responsible for the CNS activity of saffron. Pharmacokinetic properties of the main constituents from saffron have only been described to a limited extent. Therefore the present in vitro study aimed to determine if crocin-1 and trans-crocetin are able to pass the intestinal barrier and to penetrate the blood brain barrier (BBB). Additionally, the intestinal conversion of glycosylated crocins to the lipophilic crocetin had to be investigated. Experiments with Caco-2 cells and two different porcine BBB systems were conducted. Further on, potential intestinal metabolism of saffron extract was investigated by ex vivo experiments with murine intestine. Methodology: In vitro Caco-2 monolayer cell culture was used for investigation of intestinal permeation of crocin-1 and trans-crocetin. In vitro models of porcine brain capillary endothelial cells (BCEC) and blood cerebrospinal fluid barrier (BCSFB) were used for monitoring permeation characteristics of trans-crocetin through the blood brain barrier (BBB). Intestine tissue and feces homogenates from mice served for metabolism experiments. Results: Crocin-1, even at high concentrations (1000 μM) does not penetrate Caco-2 monolayers in relevant amounts. In contrast, trans-crocetin permeates in a concentration-independent manner (10-114 μM) the intestinal barrier by transcellular passage with about 32% of the substrate being transported within 2 h and a permeation coefficient of Papp 25.7 × 10(-)(6) ± 6.23 × 10(-)(6) cm/s. Trans-crocetin serves as substrate for pGP efflux pump. Trans-crocetin permeates BBB with a slow but constant velocity over a 29 h period (BCEC system: Papp 1.48 × 10(-)(6) ± 0.12 × 10(-)(6) cm/s; BCSFB system Papp 3.85 × 10(-)(6) ± 0.21 × 10(-)(6) cm/s). Conversion of glycosylated crocins from saffron extract to trans-crocetin occurs mainly by intestinal cells, rather than by microbiological fermentation in the colon. Conclusion: The here described in vitro studies have shown that crocins from saffron are probably not bioavailable in the systemic compartment after oral application. On the other side the investigations clearly have pointed out that crocins get hydrolyzed in the intestine to the deglycosylated trans-crocetin, which subsequently is absorbed by passive transcellular diffusion to a high extend and within a short time interval over the intestinal barrier. Crocetin will penetrate in a quite slow process the blood brain barrier to reach the CNS. The intestinal deglycosylation of different crocins in the intestine is mainly due to enzymatic processes in the epithelial cells and only to a very minor extent due to deglycosylation by the fecal microbiome. On the other side the fecal bacteria degrade the apocarotenoid backbone to smaller alkyl units, which do not show any more the typical UV absorbance of crocins. As previous studies have shown strong NMDA receptor affinity and channel opening activity of trans-crocetin the use of saffron for CNS disorders seems to be justified from the pharmacokinetic and pharmacodynamic background. Keywords: Absorption; Blood brain barrier; Caco-2; Crocetin; Crocus sativus L.; Metabolism.
    3''-Galloylquercitrin

    Catalog No: CFN95048
    CAS No: 503446-90-0
    Price: $368/5mg
    1-Methyl-2,8-dihydroxy-3-carboxy-9,10-anthraquinone

    Catalog No: CFN95101
    CAS No: 1401414-53-6
    Price: $338/5mg
    Polygalin C

    Catalog No: CFN95118
    CAS No: 934768-05-5
    Price: $288/5mg
    Cassiaglycoside II

    Catalog No: CFN95130
    CAS No: 2241081-56-9
    Price: $368/5mg
    Momordicine II

    Catalog No: CFN95167
    CAS No: 91590-75-9
    Price: $318/10mg
    Corymboside

    Catalog No: CFN95292
    CAS No: 73543-87-0
    Price: $318/10mg
    4,7-Didehydroneophysalin B

    Catalog No: CFN95317
    CAS No: 134461-76-0
    Price: $338/5mg
    Isocucurbitacin D

    Catalog No: CFN95326
    CAS No: 68422-20-8
    Price: $318/5mg
    10-Carboxyloganin

    Catalog No: CFN95452
    CAS No: 182172-02-7
    Price: $318/5mg
    Oxytroflavoside D

    Catalog No: CFN95491
    CAS No: 1391144-83-4
    Price: $318/10mg