Chelerythrine
Chelerythrine is a well-known protein kinase C inhibitor, can inhibit telomerase activity, it also can block the human P2X 7 receptor. Chelerythrine has antimanic, potential antiproliferative and antitumor effects, it has significant cytotoxic effect, independent of p53 and androgen status, on human prostate cancer cell lines.
Inquire / Order:
manager@chemfaces.com
Technical Inquiries:
service@chemfaces.com
Tel:
+86-27-84237783
Fax:
+86-27-84254680
Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to
24 months(2-8C).
Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.
Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com
The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
J Ethnopharmacol.2017, 206:327-336
Nutrients.2018, 11(1):E17
J Colloid Interface Sci.2022, 622:298-308.
J Chromatogr Sci.2015, 53(5):824-9
J Appl Biol Chem2021, 64(3):245-251.
Exp Biol Med (Maywood).2019, 244(18):1665-1679
JMicrobiol Biotech Food Sci2021, e4289.
Phytochemistry.2017, 141:162-170
Drug Des Devel Ther.2023, 17:2461-2479.
J Integr Plant Biol.2023, 13564.
Related and Featured Products
Tumour Biol. 2014 Jan;35(1):129-40.
Chelerythrine induces reactive oxygen species-dependent mitochondrial apoptotic pathway in a murine T cell lymphoma.[Pubmed:
23900672]
Chelerythrine is a well-known protein kinase C inhibitor and potential antiproliferative and antitumor pharmacological agent. Chelerythrine inhibits/suppresses the HSF1 phosphorylation by inhibiting PKC and blocks the nuclear migration and subsequent synthesis of hsp70 leading to reduced cell viability and activation of apoptotic machinery. Chelerythrine is also known to enhance the production of reactive oxygen intermediate that is strong activator of apoptosis in high concentration.
METHODS AND RESULTS:
Therefore, the present study intended to investigate the role of Chelerythrine-induced reactive oxygen intermediate on the viability and apoptosis of Dalton's lymphoma cells. Enhanced production of reactive oxygen species in Dalton's lymphoma (DL) cells was observed upon treatment of Chelerythrine only which was seen completely abolished on treatment of mitochondrial complex inhibitors rotenone and malonate, and anti-oxidant, N-acetyl-L-cysteine. Increased number of DL cells undergoing apoptosis, as observed by fluorescent microscopy and flow cytometry analysis, in Chelerythrine only-treated group was seen that was significantly inhibited on treatment of mitochondrial complex inhibitors and anti-oxidants. Staurosporine, on the other hand, does not lead to enhanced production of reactive oxygen intermediate in DL cells.
Redox Biol . 2017 Aug;12:367-376.
Induction of reactive oxygen species-stimulated distinctive autophagy by chelerythrine in non-small cell lung cancer cells[Pubmed:
28288416]
Abstract
Chelerythrine (CHE), a natural benzo[c]phenanthridine alkaloid, shows anti-cancer effect through a number of mechanisms. Herein, the effect and mechanism of the CHE-induced autophagy, a type II programmed cell death, in non-small cell lung cancer (NSCLC) cells were studied for the first time. CHE induced cell viability decrease, colony formation inhibition, and apoptosis in a concentration-dependent manner in NSCLC A549 and NCI-H1299 cells. In addition, CHE triggered the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II). The CHE-induced expression of LC3-II was further increased in the combination treatment with chloroquine (CQ), an autophagy inhibitor, and large amounts of red-puncta were observed in the CHE-treated A549 cells with stable expression of mRFP-EGFP-LC3, indicating that CHE induces autophagy flux. Silence of beclin 1 reversed the CHE-induced expression of LC3-II. Inhibition of autophagy remarkably reversed the CHE-induced cell viability decrease and apoptosis in NCI-H1299 cells but not in A549 cells. Furthermore, CHE triggered reactive oxygen species (ROS) generation in both cell lines. A decreased level of ROS through pretreatment with N-acetyl-L-cysteine reversed the CHE-induced cell viability decrease, apoptosis, and autophagy. Taken together, CHE induced distinctive autophagy in A549 (accompanied autophagy) and NCI-H1299 (pro-death autophagy) cells and a decreased level of ROS reversed the effect of CHE in NSCLC cells in terms of cell viability, apoptosis, and autophagy.
Keywords: Apoptosis; Autophagy; Chelerythrine; NSCLC; ROS.
Pharmacol Rep. 2014 Aug;66(4):722-5.
Partial effects of the protein kinase C inhibitor chelerythrine in a battery of tests for manic-like behavior in black Swiss mice.[Pubmed:
24948079]
The aim of the present study was to test the effects of peripheral (intraperitoneal) administration of Chelerythrine in a battery of mania-related behavioral tests in black Swiss mice, a strain specific battery that was previously demonstrated to distinguish differential effects of mood stabilizing drugs.
RESULTS:
Sub-chronic administration of 1.0mg/kg or 2.0mg/kg Chelerythrine had marginal effects to reduce spontaneous activity and sweet solution preference in black Swiss mice which naturally show mania-like behaviors. Chelerythrine had no effects on the behavior of these mice in the elevated plus-maze, the forced swim test and the amphetamine-induced hyperactivity test.
CONCLUSIONS:
The partial effects in the battery are not unique as previous studies showed that lithium, valproate and risperidone, all used in the treatment of bipolar disorder, have distinct profiles in the battery. It is therefore concluded that Chelerythrine may have antimanic effects and additional dose and time response studies are warranted to further evaluate its range of activity.
Life Sci . 2019 Jan 1;216:85-91.
Protein kinase C inhibitor chelerythrine attenuates partial unilateral ureteral obstruction induced kidney injury in neonatal rats[Pubmed:
30439378]
Abstract
The present study aimed to evaluate the renoprotective effects of Chelerythrine (CHE), a protein kinase C inhibitor, on neonatal rats after partial unilateral ureteral obstruction (UUO) surgery. New born Sprague Dawley rats were subjected to partial UUO 48 h after birth and received a daily intraperitoneal injection of 5 mg/kg CHE. At 21-day age, the rats were scarified and the kidneys were collected for analysis. Results showed that CHE treatment significantly increased kidney weight and restored renal function in the obstructed kidney. Histological examination demonstrated that CHE attenuated renal injury by reducing renal parenchymal loss and preventing glomerular and tubular degeneration. In addition, CHE inhibited partial UUO-induced upregulated kidney injury molecule-1 expression and apoptosis and renal fibrosis. Moreover, as a PKC inhibitor, CHE significantly inhibited PKCα and PKCβ membrane translocation. This action may be associated with its effects of anti-apoptosis and anti-fibrosis and contribute to the renoprotection. This short-term study suggests that CHE is beneficial for obstructive nephropathy in neonatal rats and provides foundation for further studies to reveal the long-term effects of CHE on obstructive nephropathy in children and infants.
Keywords: Chelerythrine; Kidney injury; Neonatal mouse; Protein kinase C inhibitor; Unilateral ureteral obstruction.
Arch Biochem Biophys. 2015 Mar 15;570:58-65.
Chelerythrine inhibits the sarco/endoplasmic reticulum Ca(2+)-ATPase and results in cell Ca(2+) imbalance.[Pubmed:
25721495]
The isoquinoline alkaloid Chelerythrine is described as an inhibitor of SERCA.
METHODS AND RESULTS:
The ATPase inhibition presented two non-competitive components, Ki1=1, 2 μM and Ki2=26 μM. Conversely, Chelerythrine presented a dual effect on the p-nitrophenylphosphatase (pNPPase) of SERCA. Ca(2+)-dependent pNPPase was activated up to ~5 μM Chelerythrine with inhibition thereafter. Ca(2+)-independent pNPPase was solely inhibited. The phosphorylation of SERCA with ATP reached half-inhibition with 10 μM Chelerythrine and did not parallel the decrease of ATPase activity. In contrast, Chelerythrine up to 50 μM increased the phosphorylation by Pi. Cross-linking of SERCA with glutaraldehyde was counteracted by high concentrations of Chelerythrine. The controlled tryptic digestion of SERCA shows that the low-affinity binding of Chelerythrine evoked an E2-like pattern. Our data indicate a non-competitive inhibition of ATP hydrolysis that favors buildup of the E2-conformers of the enzyme. Chelerythrine as low as 0.5-1.5 μM resulted in an increase of intracellular Ca(2+) on cultured PBMC cells. The inhibition of SERCA and the loss of cell Ca(2+) homeostasis could in part be responsible for some described cytotoxic effects of the alkaloid.
CONCLUSIONS:
Thus, the choice of Chelerythrine as a PKC-inhibitor should consider its potential cytotoxicity due to the alkaloid's effects on SERCA.
Br J Pharmacol. 2004 Jul;142(6):1015-9.
Chelerythrine and other benzophenanthridine alkaloids block the human P2X7 receptor.[Pubmed:
15210579]
1 Extracellular ATP can activate a cation-selective channel/pore on human B-lymphocytes, known as the P2X7 receptor. Activation of this receptor is linked to PLD stimulation.
METHODS AND RESULTS:
We have used ATP-induced 86Rb+ (K+) efflux to examine the effect of benzophenanthridine alkaloids on P2X7 channel/pore function in human B-lymphocytes. 2 Both ATP and the nucleotide analogue 2'-3'-O-(4-benzoylbenzoyl)-ATP (BzATP) induced an 86Rb+ efflux, which was completely inhibited by the isoquinoline derivative 1-(N,O-bis[5-isoquinolinesulphonyl]-N-methyl-l-tyrosyl)-4-phenylpiperazine (KN-62), a potent P2X7 receptor antagonist. 3 The benzophenanthridine alkaloid Chelerythrine, a potent PKC inhibitor, inhibited the ATP-induced 86Rb+ efflux by 73.4+/-3.5% and with an IC50 of 5.6+/-2.3 microm. Similarly, other members of this family of compounds, sanguinarine and berberine, blocked the ATP-induced 86Rb+ efflux by 58.8+/-4.8 and 61.1+/-8.0%, respectively. 4 Concentration-effect curves to ATP estimated an EC50 value of 78 microm and in the presence of 5 and 10 microm Chelerythrine this increased slightly to 110 and 150 microm, respectively, which fits a noncompetitive inhibitor profile for Chelerythrine. 5 Chelerythrine at 10 microm was effective at inhibiting the ATP-induced PLD stimulation in B-lymphocytes by 94.2+/-21.9% and the phorbol 12-myristate 13-acetate-induced PLD stimulation by 68.2+/-7.4%.
CONCLUSIONS:
6 This study demonstrates that Chelerythrine in addition to PKC inhibition has a noncompetitive inhibitory action on the P2X7 receptor itself.
Cell Biol Toxicol. 2006 Nov;22(6):439-53.
The effect of chelerythrine on cell growth, apoptosis, and cell cycle in human normal and cancer cells in comparison with sanguinarine.[Pubmed:
16964588 ]
METHODS AND RESULTS:
We compared the effects of Chelerythrine (CHE) and sanguinarine (SA) on human prostate cancer cell lines (LNCaP and DU-145) and primary culture of human gingival fibroblasts. CHE and SA treatment of cell lines for 24 h resulted in (1) inhibition of cell viability in a dose-dependent manner in all tested cells (as evaluated by MTT test and bromodeoxyuridine incorporation assay); (2) dose-dependent increase in DNA damage in all tested cells (as evaluated by DNA comet assay); (3) changes in apoptosis (assessed by western blot analysis and TUNEL assay); and (4) significant induction of cyclin kinase inhibitors p21(Waf1/Cip1) and p27(Kip1) in prostate cancer cells (identified by western blot analysis).
CONCLUSIONS:
Our study demonstrates that CHE had significant cytotoxic effect, independent of p53 and androgen status, on human prostate cancer cell lines. Normal gingival fibroblasts and DU-145 cells were more sensitive to the treatment with both alkaloids than were LNCaP cells.
CHE and SA may be prospective natural molecules for use in the treatment of prostate cancer owing to their involvement in apoptosis and cell cycle regulation.
Biochemistry. 2015 Feb 3;54(4):974-86.
Plant alkaloid chelerythrine induced aggregation of human telomere sequence--a unique mode of association between a small molecule and a quadruplex.[Pubmed:
25566806]
Small molecules that interact with G-quadruplex structures formed by the human telomeric region and stabilize them have the potential to evolve as anticancer therapeutic agents.
METHODS AND RESULTS:
Herein we report the interaction of a putative anticancer agent from a plant source, Chelerythrine, with the human telomeric DNA sequence. It has telomerase inhibitory potential as demonstrated from telomerase repeat amplification assay in cancer cell line extract. We have attributed this to the quadruplex binding potential of the molecule and characterized the molecular details of the interaction by means of optical spectroscopy such as absorbance and circular dichroism and calorimetric techniques such as isothermal titration calorimetry and differential scanning calorimetry. The results show that Chelerythrine binds with micromolar dissociation constant and 2:1 binding stoichiometry to the human telomeric DNA sequence. Chelerythrine association stabilizes the G-quadruplex. Nuclear magnetic resonance spectroscopy ((1)H and (31)P) shows that Chelerythrine binds to both G-quartet and phosphate backbone of the quadruplex leading to quadruplex aggregation. Molecular dynamics simulation studies support the above inferences and provide further insight into the mechanism of ligand binding. The specificity toward quartet binding for Chelerythrine is higher compared to that of groove binding. MM-PBSA calculation mines out the energy penalty for quartet binding to be -4.7 kcal/mol, whereas that of the groove binding is -1.7 kcal/mol.
CONCLUSIONS:
We propose that the first Chelerythrine molecule binds to the quartet followed by a second molecule which binds to the groove. This second molecule might bring about aggregation of the quadruplex structure which is evident from the results of nuclear magnetic resonance.