Cafestol

Cafestol
Product Name Cafestol
CAS No.: 469-83-0
Catalog No.: CFN93071
Molecular Formula: C20H28O3
Molecular Weight: 316.44 g/mol
Purity: >=98%
Type of Compound: Diterpenoids
Physical Desc.: Powder
Targets: HO-1 | IL Receptor | p38MAPK | COX | PGE | P450 (e.g. CYP17) | NF-kB | ERK | MEK | AP-1 | FAK | Nrf2 | IkB | IKK
Source: From Coffea Bean
Solvent: Chloroform, Dichloromethane, Ethyl Acetate, DMSO, Acetone, etc.
Price:
Cafestol has anticarcinogenic, peripheral antinociceptive and anti-inflammatory activities, it inhibits Cyclic-Strain-induced interleukin-8, intercellular adhesion molecule-1, and monocyte chemoattractant protein-1 production in vascular endothelial cells. Cafestol is a novel extracellular signal-regulated kinase inhibitor with AP-1-targeted inhibition of prostaglandin E2 production in lipopolysaccharide-activated macrophages. Cafestol acts as an agonist ligand for both FXR and PXR, and this may contribute to its impact on cholesterol homeostasis. Cafestol has protective effects against the CCl(4)-induced hepatotoxicity, which possibly involve mechanisms related to its ability to block the CYP2E1-mediated CCl(4) bioactivation and free radical scavenging effects. Cafestol has antidiabetic activity, it increases glucose-stimulated insulin secretion in vitro and increases glucose uptake in human skeletal muscle cells. Cafestol also has a weak inhibitory effect on osteoclastogenesis and promotes osteoblast differentiation.
Inquire / Order: manager@chemfaces.com
Technical Inquiries: service@chemfaces.com
Tel: +86-27-84237783
Fax: +86-27-84254680

Address:
1 Building, No. 83, CheCheng Rd., Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, PRC
Providing storage is as stated on the product vial and the vial is kept tightly sealed, the product can be stored for up to 24 months(2-8C).

Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20C. Generally, these will be useable for up to two weeks. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.

Need more advice on solubility, usage and handling? Please email to: service@chemfaces.com

The packaging of the product may have turned upside down during transportation, resulting in the natural compounds adhering to the neck or cap of the vial. take the vial out of its packaging and gently shake to let the compounds fall to the bottom of the vial. for liquid products, centrifuge at 200-500 RPM to gather the liquid at the bottom of the vial. try to avoid loss or contamination during handling.
  • Planta Med.2023, a-2192-2281.
  • Acta Physiologiae Plantarum2015, 37:1736
  • Korean J. Medicinal Crop Sci2021, 10:345-352.
  • Journal of Functional Foods2023, 104:105542
  • Int J Mol Sci.2020, 21(9):3239.
  • BMC Plant Biol.2022, 22(1):128.
  • Nat Prod Sci.2018, 24(2):109-114
  • Phytother Res.2018, 32(5):923-932
  • Int J Biol Macromol.2020, 169:342-351
  • J Food Composition and Analysis2022, 104417.
  • Geniposidic acid

    Catalog No: CFN98337
    CAS No: 27741-01-1
    Price: $30/20mg
    24-Methylenecycloartan-3-ol

    Catalog No: CFN99496
    CAS No: 1449-09-8
    Price: Inquiry(manager@chemfaces.com)
    Madecassoside

    Catalog No: CFN99913
    CAS No: 34540-22-2
    Price: $40/20mg
    Asiaticoside B

    Catalog No: CFN95124
    CAS No: 125265-68-1
    Price: $158/20mg
    Ganodermanondiol

    Catalog No: CFN99085
    CAS No: 107900-76-5
    Price: $318/5mg
    Oxid Med Cell Longev. 2018 Apr 30;2018:7861518.
    Cafestol Inhibits Cyclic-Strain-Induced Interleukin-8, Intercellular Adhesion Molecule-1, and Monocyte Chemoattractant Protein-1 Production in Vascular Endothelial Cells.[Pubmed: 29854096]
    Moderate coffee consumption is inversely associated with cardiovascular disease mortality; however, mechanisms underlying this causal effect remain unclear. Cafestol, a diterpene found in coffee, has various properties, including an anti-inflammatory property. This study investigated the effect of Cafestol on cyclic-strain-induced inflammatory molecule secretion in vascular endothelial cells.
    METHODS AND RESULTS:
    Cells were cultured under static or cyclic strain conditions, and the secretion of inflammatory molecules was determined using enzyme-linked immunosorbent assay. The effects of Cafestol on mitogen-activated protein kinases (MAPK), heme oxygenase-1 (HO-1), and sirtuin 1 (Sirt1) signaling pathways were examined using Western blotting and specific inhibitors. Cafestol attenuated cyclic-strain-stimulated intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein- (MCP-) 1, and interleukin- (IL-) 8 secretion. Cafestol inhibited the cyclic-strain-induced phosphorylation of extracellular signal-regulated kinase and p38 MAPK. By contrast, Cafestol upregulated cyclic-strain-induced HO-1 and Sirt1 expression. The addition of zinc protoporphyrin IX, sirtinol, or Sirt1 silencing (transfected with Sirt1 siRNA) significantly attenuated Cafestol-mediated modulatory effects on cyclic-strain-stimulated ICAM-1, MCP-1, and IL-8 secretion.
    CONCLUSIONS:
    This is the first study to report that Cafestol inhibited cyclic-strain-induced inflammatory molecule secretion, possibly through the activation of HO-1 and Sirt1 in endothelial cells. The results provide valuable insights into molecular pathways that may contribute to the effects of Cafestol.
    Biol Pharm Bull. 2010;33(1):128-32.
    Cafestol, a coffee-specific diterpene, is a novel extracellular signal-regulated kinase inhibitor with AP-1-targeted inhibition of prostaglandin E2 production in lipopolysaccharide-activated macrophages.[Pubmed: 20045950]
    Coffee is a popular beverage worldwide with various nutritional benefits. Diterpene Cafestol, one of the major components of coffee, contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects.
    METHODS AND RESULTS:
    In this study, we examined the precise molecular mechanism of the antiinflammatory activity of Cafestol in terms of prostaglandin E(2) (PGE(2)) production, a critical factor involved in inflammatory responses. Cafestol inhibited both PGE(2) production and the mRNA expression of cyclooxygenase (COX)-2 from lipopolysaccharide (LPS)-treated RAW264.7 cells. Interestingly, this compound strongly decreased the translocation of c-Jun into the nucleus and AP-1 mediated luciferase activity. In kinase assays using purified extracellular signal-regulated kinase 2 (ERK2) or immunoprecipitated ERK prepared from LPS-treated cells in the presence or absence of Cafestol, it was found that this compound can act as an inhibitor of ERK2 but not of ERK1 and mitogen-activated protein kinase kinase 1 (MEK 1).
    CONCLUSIONS:
    Therefore our data suggest that Cafestol may be a novel ERK inhibitor with AP-1-targeted inhibitory activity against PGE(2) production in LPS-activated RAW264.7 cells.
    Biofactors. 2015 Jul-Aug;41(4):222-31.
    Cafestol has a weaker inhibitory effect on osteoclastogenesis than kahweol and promotes osteoblast differentiation.[Pubmed: 26154488]
    Bone homeostasis is regulated by a balance between osteoclast (OCL)-mediated bone resorption and osteoblast (OBL)-mediated bone formation. Thus, developing a compound that simultaneously inhibits OCL function and promotes OBL function would be useful as a new medical therapy for bone diseases.
    METHODS AND RESULTS:
    Here, we examined the effects of Cafestol, a coffee diterpene, on the differentiation of OCLs and OBLs. Cafestol prevented OCL formation in a dose-dependent manner and suppressed the bone-resorbing activity of OCLs. Interestingly, the viability of OCLs treated with 10-50 μM Cafestol was significantly higher than that of untreated cells. At the molecular level, Cafestol markedly decreased RANKL-induced phosphorylation of extracellular signal-regulated kinase (Erk) and inhibitor of nuclear factor kappa B alpha (IκBα). Compared to kahweol, another coffee-specific diterpene, the inhibitory effects of Cafestol were milder on OCL differentiation, and Cafestol and kahweol showed different characteristics in induction of the phase ΙΙ antioxidant enzymes and sensitivities in nuclear factor-erythroid 2-related factor 2 (Nrf2)-deficient BMMs. In addition to inhibiting OCLs, Cafestol enhanced the differentiation of osteoblastic cells by increasing the mRNA levels of differentiation markers.
    CONCLUSIONS:
    Thus, Cafestol inhibits OCL differentiation and promotes OBL differentiation, suggesting that Cafestol may be a novel agent for bone diseases.
    Food Chem Toxicol. 2007 Nov;45(11):2118-25.
    Hepatoprotective and antioxidant effects of the coffee diterpenes kahweol and cafestol on carbon tetrachloride-induced liver damage in mice.[Pubmed: 17590492 ]
    The hepatoprotective effects of kahweol and Cafestol, coffee-specific diterpenes, on the carbon tetrachloride (CCl(4))-induced liver damage as well as the possible mechanisms involved in these protections were investigated.
    METHODS AND RESULTS:
    Pretreatment with kahweol and Cafestol prior to the administration of CCl(4) significantly prevented the increase in the serum levels of hepatic enzyme markers (alanine aminotransferase and aspartate aminotransferase) and reduced oxidative stress, such as reduced glutathione content and lipid peroxidation, in the liver in a dose-dependent manner. The histopathological evaluation of the livers also revealed that kahweol and Cafestol reduced the incidence of liver lesions induced by CCl(4). Treatment of the mice with kahweol and Cafestol also resulted in a significant decrease in the cytochrome P450 2E1 (CYP2E1), the major isozyme involved in CCl(4) bioactivation, specific enzyme activities, such as p-nitrophenol and aniline hydroxylation. Kahweol and Cafestol exhibited antioxidant effects on FeCl(2)-ascorbate induced lipid peroxidation in a mouse liver homogenate, and on superoxide radical scavenging activity.
    CONCLUSIONS:
    These results suggest that the protective effects of kahweol and Cafestol against the CCl(4)-induced hepatotoxicity possibly involve mechanisms related to their ability to block the CYP2E1-mediated CCl(4) bioactivation and free radical scavenging effects.
    J Nat Prod. 2017 Aug 25;80(8):2353-2359.
    Cafestol, a Bioactive Substance in Coffee, Has Antidiabetic Properties in KKAy Mice.[Pubmed: 28763212 ]
    Daily coffee consumption is inversely associated with risk of type-2 diabetes (T2D). Cafestol, a bioactive substance in coffee, increases glucose-stimulated insulin secretion in vitro and increases glucose uptake in human skeletal muscle cells.
    METHODS AND RESULTS:
    We hypothesized that Cafestol can postpone development of T2D in KKAy mice. Forty-seven male KKAy mice were randomized to consume chow supplemented daily with either 1.1 (high), 0.4 (low), or 0 (control) mg of Cafestol for 10 weeks. We collected blood samples for fasting glucose, glucagon, and insulin as well as liver, muscle, and fat tissues for gene expression analysis. We isolated islets of Langerhans and measured insulin secretory capacity. After 10 weeks of intervention, fasting plasma glucose was 28-30% lower in Cafestol groups compared with the control group (p < 0.01). Fasting glucagon was 20% lower and insulin sensitivity improved by 42% in the high-Cafestol group (p < 0.05). Cafestol increased insulin secretion from isolated islets by 75-87% compared to the control group (p < 0.001).
    CONCLUSIONS:
    Our results show that Cafestol possesses antidiabetic properties in KKAy mice. Consequently, Cafestol may contribute to the reduced risk of developing T2D in coffee consumers and has a potential role as an antidiabetic drug.
    Food Chem Toxicol. 2002 Aug;40(8):1155-63.
    Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity.[Pubmed: 12067578]
    Epidemiological studies have found an inverse association between coffee consumption and the risk of certain types of cancers such as colorectal cancers. Animal data support such a chemopreventive effect of coffee. Substantial research has been devoted to the identification of coffee components that may be responsible for these beneficial effects.
    METHODS AND RESULTS:
    In animal models and cell culture systems, the coffee diterpenes Cafestol and kahweol (C+K) were shown to produce a broad range of biochemical effects resulting in a reduction of the genotoxicity of several carcinogens including 7,12-dimethylbenz[a]anthracene (DMBA), aflatoxin B(1) (AFB(1)), benzo[a]pyrene (B[a]P) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Different mechanisms appear to be involved in these chemoprotective effects: an induction of conjugating enzymes (e.g. glutathione S-transferases, glucuronosyl S-transferases), an increased expression of proteins involved in cellular antioxidant defense (e.g. gamma-glutamyl cysteine synthetase and heme oxygenase-1) and an inhibition of the expression and/or activity of cytochromes P450 involved in carcinogen activation (e.g. CYP2C11, CYP3A2). In animal models, the C+K-mediated induction of conjugating and antioxidant enzymes has been observed in hepatic, intestinal and kidney tissues. In the small intestine, these inductions were shown to be mediated by Nrf2-dependent transcriptional activation. In vitro investigations obtained in cell cultures of human origin indicate that the effects and mechanisms observed in animal test systems with C+K are likely to be of relevance for humans. In human liver epithelial cell lines transfected to express AFB(1)-activating P450s, C+K treatment resulted in a reduction of AFB(1)-DNA binding. This protection was correlated with an induction of GST-mu, an enzyme known to be involved in AFB(1) detoxification. In addition, C+K was found to inhibit P450 2B6, one of the human enzymes responsible for AFB(1) activation.
    CONCLUSIONS:
    Altogether, the data on the biological effects of C+K provide a plausible hypothesis to explain some of the anticarcinogenic effects of coffee observed in human epidemiological studies and in animal experiments.
    FEBS Lett. 2004 Jul 2;569(1-3):321-6.
    Suppressive effects of the kahweol and cafestol on cyclooxygenase-2 expression in macrophages.[Pubmed: 15225655]
    Inducible cyclooxygenase-2 (COX-2) has been suggested to play a role in the processes of inflammation and carcinogenesis. Recent studies have shown the chemoprotective effects of kahweol and Cafestol, which are coffee-specific diterpenes.
    METHODS AND RESULTS:
    This study investigated the effects of kahweol and Cafestol on the expression of COX-2 in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Kahweol and Cafestol significantly suppressed the LPS-induced production of prostaglandin E(2), COX-2 protein and mRNA expression, and COX-2 promoter activity in a dose-dependent manner. Furthermore, kahweol blocked the LPS-induced activation of NF-kappaB by preventing IkappaB degradation and inhibiting IkappaB kinase activity.
    CONCLUSIONS:
    These results will provide new insights into the anti-inflammatory and anti-carcinogenic properties of kahweol and Cafestol.
    Biochem Biophys Res Commun. 2012 May 11;421(3):567-71.
    Antiangiogenic properties of cafestol, a coffee diterpene, in human umbilical vein endothelial cells.[Pubmed: 22525673 ]
    As angiogenesis plays important roles in tumor growth and metastasis, searching for antiangiogenic compounds is a promising tactic for treating cancers. Cafestol, a diterpene found mainly in unfiltered coffee, provides benefit through varied biological activity, including antitumorigenic, antioxidative, and anti-inflammatory effects. This study aimed to investigate the effects of Cafestol on angiogenesis and to uncover the associated mechanism.
    METHODS AND RESULTS:
    We show that Cafestol inhibits angiogenesis of human umbilical vascular endothelial cells. This inhibition affects the following specific steps of the angiogenic process: proliferation, migration, and tube formation. The inhibitory effects of Cafestol are accompanied by decreasing phosphorylation of FAK and Akt and by a decrease in nitric oxide production.
    CONCLUSIONS:
    Overall, Cafestol inhibits angiogenesis by affecting the angiogenic signaling pathway.
    Mol Endocrinol. 2007 Jul;21(7):1603-16.
    The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors.[Pubmed: 17456796]
    Cafestol, a diterpene present in unfiltered coffee brews such as Scandinavian boiled, Turkish, and cafetière coffee, is the most potent cholesterol-elevating compound known in the human diet. Several genes involved in cholesterol homeostasis have previously been shown to be targets of Cafestol, including cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid biosynthesis. We have examined the mechanism by which Cafestol elevates serum lipid levels.
    METHODS AND RESULTS:
    Changes in several lipid parameters were observed in Cafestol-treated APOE3Leiden mice, including a significant increase in serum triglyceride levels. Microarray analysis of these mice identified alterations in hepatic expression of genes involved in lipid metabolism and detoxification, many of which are regulated by the nuclear hormone receptors farnesoid X receptor (FXR) and pregnane X receptor (PXR). Further studies demonstrate that Cafestol is an agonist ligand for FXR and PXR, and that Cafestol down-regulates expression of the bile acid homeostatic genes CYP7A1, sterol 12alpha-hydroxylase, and Na(+)-taurocholate cotransporting polypeptide in the liver of wild-type but not FXR null mice. Cafestol did not affect genes known to be up-regulated by FXR in the liver of wild-type mice, but did increase expression of the positive FXR-target genes intestinal bile acid-binding protein and fibroblast growth factor 15 (FGF15) in the intestine. Because FGF15 has recently been shown to function in an enterohepatic regulatory pathway to repress liver expression of bile acid homeostatic genes, its direct induction in the gut may account for indirect effects of Cafestol on liver gene expression. PXR-dependent gene regulation of cytochrome P450 3A11 and other targets by Cafestol was also only seen in the intestine. Using a double FXR/PXR knockout mouse model, we found that both receptors contribute to the Cafestol-dependent induction of intestinal FGF15 gene expression.
    CONCLUSIONS:
    In conclusion, Cafestol acts as an agonist ligand for both FXR and PXR, and this may contribute to its impact on cholesterol homeostasis.
    8,8''-Bibaicalein

    Catalog No: CFN95007
    CAS No: 135309-02-3
    Price: $318/5mg
    Iristectorin A

    Catalog No: CFN95037
    CAS No: 37744-61-9
    Price: $318/20mg
    Rhamnetin 3-galactoside

    Catalog No: CFN95116
    CAS No: 62858-07-5
    Price: $318/5mg
    Patulitrin

    Catalog No: CFN95153
    CAS No: 19833-25-1
    Price: $318/10mg
    Pueroside C

    Catalog No: CFN95156
    CAS No: 112343-16-5
    Price: $368/5mg
    9-Octadecenedioic acid

    Catalog No: CFN95301
    CAS No: 4494-16-0
    Price: $218/5mg
    Diosmin Impurity 5

    Catalog No: CFN95311
    CAS No: 122087-66-5
    Price: $318/10mg
    Parishin G

    Catalog No: CFN95324
    CAS No: 952283-93-1
    Price: $318/10mg
    Yinxiancaoside C

    Catalog No: CFN95377
    CAS No: 1159908-74-3
    Price: $413/5mg
    5-Demethylsinensetin

    Catalog No: CFN95415
    CAS No: 21763-80-4
    Price: $318/10mg