Anticonvulsant

4-Hydroxybenzaldehyde
Catalog No: CFN99013

4-Hydroxybenzaldehyde shows an inhibitory effect on the GABA transaminase to contribute to an antiepileptic and anticonvulsive activity, and its inhibitory activity was higher than that of valproic acid, a known anticonvulsant.
1,2-Benzenediol
Catalog No: CFN99329

1,2-Dihydroxybenzene can induce spontaneous convulsive activity in the anaesthetized mouse and produce myoclonic jerks in the rat. It regulated 5-Hydroxytryptamine (5-HT) levels.
Gastrodin
Catalog No: CFN99549

Gastrodin has antioxidant, cytoprotective, anticonvulsant, and anti-inflammation activities, it may be useful in the prevention and treatment of osteoporosis. Gastrodin also has protective effect to the prevention of neurotoxicity induced by ischemic stroke, the mechanism is by improving anti-oxidant and anti-inflammation activities, inhibiting apoptosis pathway, and increasing Akt phosphorylation and Nrf2 expression. Gastrodin activates PI3-K/Akt signaling and that inhibition of this pathway reverses the inhibitory effects of gastrodin on NF-κB and MAPKs activation in H9c2 cardiomyocytes.
Hispidulin
Catalog No: CFN99491

Hispidulin has anti-oxidative, anti-inflammatory, anti-cancer, antiepileptic, neuroprotective, anti-osteoporotic and bone resorption attenuating effects, it targets the VEGF receptor 2-mediated PI3K/Akt/mTOR signaling pathway in endothelial cells, leading to the suppression of pancreatic tumor growth and angiogenesis. Hispidulin can ameliorate high glucose-mediated endothelial dysfunction via inhibiting PKCβII-associated NLRP3 inflammasome activation and NF-κB signaling, it has potential application in the prevention and treatment of diabetic vascular complications. Hispidulin can inhibit platelet aggregation by elevating cAMP levels by a mechanism different from that of theophylline or PGE1.
(-)-Bilobalide
Catalog No: CFN99789

Bilobalide possesses anticonvulsant, insecticidal, and cardioprotective effects. Bilobalide exerts protective and trophic effects on neurons, the PI3K/Akt pathway may be involved in the protective effects of bilobalide; it also can protect PC12 cells from A beta 25-35-induced cytotoxicity, it dose-dependently attenuates the cytotoxic effect of A beta 25-35.